Ultralow-velocity zones (ULVZs) at the core–mantle boundary (CMB) represent some of the most preternatural features in Earth’s mantle. These zones most likely contain partial melt, extremely high iron content ferropericlase, or combinations of both. We analyzed a new collection of 58,155 carefully processed and quality-controlled broadband recordings of the seismic phase SPdKS in the epicentral distance range from 106° to 115°. These data sample 56.9% of the CMB by surface area. From these recordings we searched for the most anomalous seismic waveforms that are indicative of ULVZ presence. We used a Bayesian approach to identify the regions of the CMB that have the highest probability of containing ULVZs, thereby identifying sixteen regions of interest. Of these regions, we corroborate well-known ULVZ existence beneath the South China Sea, southwest Pacific, the Samoa hotspot, the southwestern US/northern Mexico, and Iceland. We find good evidence for new ULVZs beneath North Africa, East Asia, and north of Papua New Guinea. We provide further evidence for ULVZs in regions where some evidence has been hinted at before beneath the Philippine Sea, the Pacific Northwest, and the Amazon Basin. Additional evidence is shown for potential ULVZs at the base of the Caroline, San Felix and Galapagos hotspots.
Ultralow velocity zones (ULVZs) are small-scale structures with a sharp decrease in S and P wave velocity, and an increase in the density on the top of the Earth's core-mantle boundary. The ratio of S and P wave velocity reduction and density anomaly are important to understanding whether ULVZs consist of partial melt or chemically distinct material. However, existing methods such as forward waveform modeling that utilize 1-D and 2-D Earth-structure models face challenges when trying to uniquely quantify ULVZ properties because of inherent nonuniqueness and nonlinearity. This paper develops a Bayesian inversion for ULVZ parameters and uncertainties with rigorous noise treatment to address these challenges. The posterior probability density of the ULVZ parameters (the solution to the inverse problem) is sampled by the Metropolis-Hastings algorithm. To improve sampling efficiency, parallel tempering is applied by simulating a sequence of tempered Markov chains in parallel and allowing information exchange between chains. First, the Bayesian inversion is applied to simulated noisy data for a realistic ULVZ model. Then, measured data sampling the lowermost mantle under the Philippine Sea are considered. Cluster analysis and visual waveform inspection suggest that two distinct classes of ScP (S waves converted to, and reflected as, P waves) waves exist in this region. The distinct waves likely correspond to lateral variability in the lowermost mantle properties in a NE-SW direction. For the NE area, Bayesian model selection identifies a two-layer model with a gradual density increase as a function of depth as optimal. This complex ULVZ structure can be due to the percolation of iron-enriched, molten material in the lowermost mantle. The results for the SW area are more difficult to interpret, which may be due to the limited number of data available (too few waveforms to appropriately reduce noise) and/or complex 2-D and 3-D structures that cannot be explained properly by the 1-D models required by our inversion approach. In particular, the complex waveforms require highly layered 1-D models to fit the data. These models appear physically unreasonable and suggest that the SW region cannot be explained by 1-D structure.
For nearly 3 decades, features sitting on top of the core-mantle boundary (CMB) and referred to as ultralow-velocity zones (ULVZs) have been invoked to explain anomalous travel-time delays and the existence of a variety of pre-and post-cursor arrivals observed in seismic data. A clear definition of what constitutes a ULVZ is currently lacking; nevertheless, most papers invoking ULVZ occurrence state that they are regions of low S-and/or P-wave velocities (of the order of 10% or greater decreases) in thin regions (typically less than 40 km is stated) sitting on top of the CMB (
The Tyrrhenian basin serves as a natural laboratory for back-arc basin studies in the Mediterranean region. Yet, little is known about the crust-uppermost mantle structure beneath the basin and its margins. Here, we present a new 3D shear-wave velocity model and Moho topography map for the Tyrrhenian basin and its margins using ambient noise cross-correlations. We apply a self-parameterized Bayesian inversion of Rayleigh group and phase velocity dispersions to estimate the lateral variation of shear velocity and its uncertainty as a function of depth (down to 100 km). Results reveal the presence of a broad low velocity zone between 40 and 80 km depth affecting much of the Tyrrhenian basin’s uppermost mantle structure and its extension mimics the paleogeographic reconstruction of the Calabrian arc in time. We interpret the low-velocity structure as the possible source of Mid-Ocean Ridge Basalts- and Ocean Island Basalts- type magmatic rocks found in the southern Tyrrhenian basin. At crustal depths, our results support an exhumed mantle basement rather than an oceanic basement below the Vavilov basin. The 3D crust-uppermost mantle structure supports a present-day geodynamics with a predominant Africa-Eurasia convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.