The aim of this paper is to optimize the metal removal rate and surface roughness through turning on AISI D3 Steel with coated carbide inserts. As per the current market scenario, for the metal cutting industries the most important challenge in the turning process is to satisfy both requirements quality as well as high productivity in less time in order to remain competitive. Among all the different cutting processes, the turning process is one of the most applied and fundamental metal removal operations in the real manufacturing environment. This work examines the impact of machining factors like speed, depth of cut & feed on roughness and MRR of AISI D3 steel which have a hardness value of 60 HRC with coated carbide inserts. At high speed and feed rate optimum MRR was achieved and opposite to that at low feed and depth of cut optimum surface roughness was obtained. Taguchi L9 (3)3 OA has been applied for experimental design. ANOVA analysis is performed just after DOE to identify the significant factor which influences MRR and surface roughness. Among the three machining factors, depth of cut and speed has more influencing effect on roughness and the feed influences MRR. Effort was made to find optimum solution to minimize the roughness and maximize the MRR by Taguchi and ANOVA technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.