This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The gharial (Gavialis gangeticus) is a critically endangered crocodylian, endemic to the Indian subcontinent. The species has experienced severe population decline during the twentieth century owing to habitat loss, poaching, and mortalities in passive fishing. Its extant populations have largely recovered through translocation programmes initiated in 1975. Understanding the genetic status of these populations is crucial for evaluating the effectiveness of the ongoing conservation efforts. This study assessed the genetic diversity, population structure, and evidence of genetic bottlenecks of the two managed populations inhabiting the Chambal and Girwa Rivers, which hold nearly 80% of the global gharial populations. We used seven polymorphic nuclear microsatellite loci and a 520 bp partial fragment of the mitochondrial control region (CR). The overall mean allelic richness (Ar) was 2.80 ± 0.40, and the observed (Ho) and expected (He) heterozygosities were 0.40 ± 0.05 and 0.39 ± 0.05, respectively. We observed low levels of genetic differentiation between populations (FST = 0.039, P < 0.05; G’ST = 0.058, P < 0.05 Jost’s D = 0.016, P < 0.05). The bottleneck analysis using the M ratio (Chambal = 0.31 ± 0.06; Girwa = 0.41 ± 0.12) suggested the presence of a genetic bottleneck in both populations. The mitochondrial CR also showed a low level of variation, with two haplotypes observed in the Girwa population. This study highlights the low level of genetic diversity in the two largest managed gharial populations in the wild. Hence, it is recommended to assess the genetic status of extant wild and captive gharial populations for planning future translocation programmes to ensure long-term survival in the wild.
Eld's deer (Rucervus eldii) with three recognised subspecies (R. e. eldii, R. e. thamin, and R. e. siamensis) represents one of the most threatened cervids found in Southeast Asia. The species has experienced considerable range contractions and local extinctions owing to habitat loss and fragmentation, hunting, and illegal trade across its distribution range over the last century. Understanding the patterns of genetic variation is crucial for planning effective conservation strategies. This study investigated the phylogeography, divergence events and systematics of Eld's deer subspecies using the largest mtDNA dataset compiled to date. We also analysed the genetic structure and demographic history of R. e. eldii using 19 microsatellite markers. Our results showed that R. e. siamensis exhibits two divergent mtDNA lineages (mainland and Hainan Island), which diverged around 0.2 Mya (95% HPD 0.1–0.2), possibly driven by the fluctuating sea levels of the Early Holocene period. The divergence between R. e. eldii and R. e. siamensis occurred around 0.4 Mya (95% HPD 0.3–0.5), potentially associated with the adaptations to warm and humid climate with open grassland vegetation that predominated the region. Furthermore, R. e. eldii exhibits low levels of genetic diversity and small contemporary effective population size (median = 7, 4.7–10.8 at 95% CI) with widespread historical genetic bottlenecks which accentuates its vulnerability to inbreeding and extinction. Based on the observed significant evolutionary and systematic distance between Eld’s deer and other species of the genus Rucervus, we propose to classify Eld's deer (Cervus eldii) in the genus Cervus, which is in congruent with previous phylogenetic studies. This study provides important conservation implications required to direct the ongoing population recovery programs and planning future conservation strategies.
A decline in the numbers of threatened species is often reversed by reintroduction with the aim of repopulating or strengthening the population to reduce the risk of extinction. The success of reintroduction programs is associated with demographic and genetic monitoring of the reintroduced populations. We undertook a genetic assessment of the Critically Endangered gharial (Gavialis gangeticus) to assess the current level of genetic variation using three partial mitochondrial (mt) DNA regions: cytochrome b, cytochrome c oxidase subunit-I and the control region. We sequenced 103 samples collected across 14 nesting sites. A low level of mtDNA variation was observed in the sampled population (hd = 0.462 ± 0.048; Pi = 0.00029 ± 0.00004). Only five distinct haplotypes were observed in three segregating sites. This is the first assessment of the genetic variation in the wild gharial population to be made using mtDNA. Homogeneity in the 520 bp hypervariable control region of the crocodilian mtDNA is reported here for the first time. The low mitochondrial diversity and no genetic structure in the sampled population is indicative of a genetic bottleneck, the founder effect and probably associated with humanassisted augmentation of the population of the gharial. An extremely low level of genetic variation in the largest gharial population highlights the vulnerability of the gharial population in the wild and calls for immediate genetic assessment of other gharial populations so that a robust conservation plan focusing on connectivity and enhanced protection can be developed for the long-term persistence of the gharial in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.