Cancers of oral cavities are one of the most common malignancies in India and other south-Asian countries. Tobacco habits are the main etiological factors for oral cancer. Identification of premalignant lesions is required for improving survival rates related to oral cancer. Optical spectroscopy methods are projected as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex-vivo tissues. We intend to evaluate potentials of Raman spectroscopy in detecting premalignant conditions. Spectra were recorded from premalignant patches, contralateral normal (opposite to tumor site), and cancerous sites of subjects with oral cancers and also from age-matched healthy subjects with and without tobacco habits. A total of 861 spectra from 104 subjects were recorded using a fiber-optic probe-coupled HE-785 Raman spectrometer. Spectral differences in the 1200- to 1800-cm-1 region were subjected to unsupervised principal component analysis and supervised linear discriminant analysis followed by validation with leave-one-out and an independent test data set. Results suggest that premalignant conditions can be objectively discriminated with both normal and cancerous sites as well as from healthy controls with and without tobacco habits. Findings of the study further support efficacy of Raman spectroscopic approaches in oral-cancer applications.
Occurrence of metachronous and synchronous secondary tumors in oral cavities has been associated with poor prognosis and decreased 5-year disease-free survival rates. The origin of secondary tumors in the oral cavity has been primarily attributed to cancer field effects (CFE) or malignancy-associated changes (MAC) in uninvolved areas. Classification of normal, cancerous and pre-cancerous oral lesions by in vivo Raman spectroscopy (RS) has already been demonstrated. In the present study, MAC/CFE in oral buccal mucosa were explored. In vivo Raman spectra from 84 subjects (722 spectra) under five categories - cancer and contralateral normal (opposite side of tumor), healthy controls (no tobacco habit, no cancer), habitués healthy controls (tobacco habit, no cancer) and non-habitués contralateral normal (no tobacco habit with cancer) were acquired. Mean and difference spectra suggest that loss of lipids and additional features representing proteins and DNA are characteristics of all pathological conditions, with respect to healthy controls. Spectral data were analyzed by PC-LDA followed by leave-one-out cross-validation. Results suggest that Raman characteristics of mucosa of healthy controls are exclusive, while those of habitués healthy controls are similar to those of contralateral normal mucosa. It was observed that the cluster of non-habitués contralateral normal mucosa is different from habitués healthy controls, suggesting that malignancy associated changes can be identified and also indicating that transformation of uninvolved oral mucosa due to tobacco habit or malignancy is different. The findings of the study demonstrate the potential of RS in identifying early transformation changes in oral mucosa and the efficacy of this approach in oral cancer applications.
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Noninvasive blood glucose monitoring has been a long-standing dream in diabetes management. The use of Raman spectroscopy, with its molecular specificity, has been investigated in this regard over the past decade. Previous studies reported on glucose sensing based on indirect evidence such as statistical correlation to the reference glucose concentration. However, these claims fail to demonstrate glucose Raman peaks, which has raised questions regarding the effectiveness of Raman spectroscopy for glucose sensing. Here, we demonstrate the first direct observation of glucose Raman peaks from in vivo skin. The signal intensities varied proportional to the reference glucose concentrations in three live swine glucose clamping experiments. Tracking spectral intensity based on linearity enabled accurate prospective prediction in within-subject and intersubject models. Our direct demonstration of glucose signal may quiet the long debate about whether glucose Raman spectra can be measured in vivo in transcutaneous glucose sensing.
Metabolomics is a systemic study of metabolites, which are small molecules generated by the process of metabolism. The metabolic profile of saliva can provide an early outlook of the changes associated with a wide range of diseases, including oral cancer and periodontal diseases. It is possible to measure levels of disease-specific metabolites using different methods as presented in this study. However, many challenges exist including incomplete understanding of the complicated metabolic pathways of different oral diseases. The review concludes with the discussion on future perspectives of salivary metabolomics from a clinician point of view. Salivary metabolomics may afford a new research avenue to identify local and systemic disorders but also to aid in the design and modification of therapies. A MEDLINE search using keywords "salivary metabolomics" returned 23 results in total, of which seven were omitted for being reviews or letters to the editor. The rest of the articles were used for preparation of the review, 13 of these were published in the last 5 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.