With respect to sensitivity, selectivity and speed of operation, the current differential scheme is a better way to protect transmission lines than overcurrent and distance-based schemes. However, the protection scheme can be severely influenced by the Line Charging Capacitive Current (LCCC) with increased voltage level and Current Transformer (CT) saturation under external close-in faults. This paper presents a new UHV/EHV current-based protection scheme using the ratio of phasor summation of the two-end currents to the local end current, instead of summation of the two-end currents, to discriminate the internal faults. The accuracy and effectiveness of the proposed protection technique are tested on the 110 kV Western System Coordinating Council (WSCC) 9-bus system using PSCAD/MATLAB. The simulation results confirm the reliable operation of the proposed scheme during internal/external faults and its independence from fault location, fault resistance, type of fault, and variations in source impedance. Finally, the effectiveness of the proposed scheme is also verified with faults during power swing and in series compensated lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.