Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated—“The most fruitful basis for the discovery of a new drug is to start with an old drug”. However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the result of “serendipity”, discovered during late phase clinical studies of unexpected but beneficial findings. The connections between drug candidates and their potential adverse drug reactions or new applications are often difficult to foresee because the underlying mechanism associating them is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such multi-domain pharmacomodules—pharmacologically relevant sub-networks of biomolecules and/or pathways—from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning.
Maximizing the indications potential and revenue from drugs that are already marketed offers a new take on the famous mantra of the Nobel Prize-winning pharmacologist, Sir James Black, “The most fruitful basis for the discovery of a new drug is to start with an old drug”. However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Most of the repositioned drugs therefore are the result of “serendipity” - based on late phase clinical studies of unexpected findings. One of the reasons that the connection between drug candidates and their potential adverse drug reactions or new applications could not be identified earlier is that the underlying mechanism associating them is either very intricate and unknown or dispersed and buried in a sea of information. Discovery of such multi-domain pharmacomodules - pharmacologically relevant sub-networks of biomolecules and/or pathways - from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.