In this manuscript, we present our work on Logo classification in PCBs for Hardware assurance purposes. Identifying and classifying logos have important uses for text detection, component authentication and counterfeit detection. Since PCB assurance faces the lack of a representative dataset for classification and detection tasks, we collect different variants of logos from PCBs and present data augmentation techniques to create the necessary data to perform machine learning. In addition to exploring the challenges for image classification tasks in PCBs, we present experiments using Random Forest classifiers, Bag of Visual Words (BoVW) using SIFT and ORB Fully Connected Neural Networks (FCN) and Convolutional Neural Network (CNN) architectures. We present results and also a discussion on the edge cases where our algorithms fail including the potential for future work in PCB logo detection. The code for the algorithms along with the dataset that includes 18 classes of logos with 14000+ images is provided at this link: https://www.trusthub.org/#/data
Index Terms—AutoBoM, Logo classification, Data augmentation, Bill of materials, PCB Assurance, Hardware Assurance, Counterfeit avoidance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.