The essence of the present work is to study the rheological properties of the in-house prepared magnetorheological (MR) fluids in the pre-yield region since the rheological properties play a vital role in better understanding of vibration damping capabilities of MR fluids. In the present work, two different compositions of MR fluid samples were prepared with 24 and 30 volume percentages of carbonyl iron (CI) particles. Prepared MR fluid samples contain CI particles as a dispersive medium, silicone oil as a carrier fluid and white lithium grease as an anti-settling agent. The oscillating driving frequency and amplitude strain sweep tests are performed to investigate the rheological properties within the pre-yield region. The influences of driving frequency, strain amplitude, magnetic field and CI particles volume percentage on the rheological properties of the prepared MR fluids were assessed. The linear viscoelastic region of the prepared MR fluid sample was identified and the yield strain obtained was around 0.371%. It is observed that the volume percentage of CI particles in the MR fluid strongly influenced the rheological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.