A chemically defined nutrient feed (CDF) coupled with basal medium preloading was developed to replace a hydrolysate-containing feed (HCF) for a fed-batch NS0 process. The CDF not only enabled a completely chemically defined process but also increased recombinant monoclonal antibody titer by 115%. Subsequent tests of CDF in a CHO process indicated that it could also replace the hydrolysate-containing nutrient feed in this expression system as well as providing an 80% increase in product titer. In both CDF NS0 and CHO processes, the peak lactate concentrations were lower and, more interestingly, lactate metabolism shifted markedly from net production to net consumption when cells transitioned from exponential to stationary growth phase. Subsequent investigations of the lactate metabolic shift in the CHO CDF process were carried out to identify the cause(s) of the metabolic shift. These investigations revealed several metabolic features of the CHO cell line that we studied. First, glucose consumption and lactate consumption are strictly complementary to each other. The combined cell specific glucose and lactate consumption rate was a constant across exponential and stationary growth phases. Second, Lactate dehydrogenase (LDH) activity fluctuated during the fed-batch process. LDH activity was at the lowest when lactate concentration started to decrease. Third, a steep cross plasma membrane glucose gradient exists. Intracellular glucose concentration was more than two orders of magnitude lower than that in the medium. Fourth, a large quantity of citrate was diverted out of mitochondria to the medium, suggesting a partially truncated tricarboxylic acid (TCA) cycle in CHO cells. Finally, other intermediates in or linked to the glycolytic pathway and the TCA cycle, which include alanine, citrate, isocitrate, and succinate, demonstrated a metabolic shift similar to that of lactate. Interestingly, all these metabolites are either in or linked to the pathway downstream of pyruvate, but upstream of fumarate in glucose metabolism. Although the specific mechanisms for the metabolic shift of lactate and other metabolites remain to be elucidated, the increased understanding of the metabolism of CHO cultures could lead to future improvements in medium and process development.
Permeability coefficients of human umbilical vein endothelial cell monolayers cultured on polycarbonate filters were determined by monitoring transendothelial albumin transport. Permeability was determined as a function of time in culture and in the presence of vasoactive agonists. Permeability decreased with increasing time in culture. All agonist experiments were performed with 15-day cultures because this time point best modeled the in vivo permeability barrier function. Permeability of endothelial monolayers decreased significantly in the presence of the stable prostacyclin analogue iloprost (6 nM), dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP, 0.5 mM)-3-isobutyl-1-methylxanthine (IBMX, 0.1 mM), 8-bromo cAMP (0.5 mM)-IBMX, dibutyryl cAMP-theophylline (0.5 mM), or IBMX. A 9.6-fold increase in permeability resulting from thrombin [0.15 U/ml (1 nM)] treatment was inhibited by pretreating the monolayers with dibutyryl cAMP-IBMX, 8-bromo cAMP-IBMX, dibutyryl cAMP-theophylline, dibutyryl cAMP, IBMX, iloprost, or D-Phe-Pro-Arg-CH2-alpha-thrombin (1 nM). The thrombin-induced permeability increase was not significantly altered by pretreating monolayers with aspirin (5 microM) or indomethacin (50 microM). Inactivated forms of thrombin, diisopropylflurophosphate-alpha-thrombin (1 nM) and D-Phe-Pro-Arg-CH2-alpha-thrombin, did not significantly affect permeability. Monolayer permeability was not altered in response to bradykinin (1 microM). These results suggest a mediating role for intracellular cAMP in the permeability barrier function of endothelial monolayers.
A majority of the previous investigations on the hydrodynamic sensitivity of mammalian cells have focused on lethal effects as determined by cell death or lysis. In this study, we investigated the effect of hydrodynamic stress on CHO cells in a fed-batch process using a previously reported system which subjects cells to repetitive, high levels of hydrodynamic stress, quantified by energy dissipation rate (EDR). The results indicated that cell growth and monoclonal antibody production of the test cells were very resistant to the hydrodynamic stress. Compared to the control, no significant variation was observed at the highest EDR tested, 6.4 x 10(6) W/m(3). Most product quality attributes were not affected by intense hydrodynamic stress either. The only significant impact was on glycosylation. A shift of glycosylation pattern was observed at EDR levels at or higher than 6.0 x 10(4) W/m(3), which is two orders of magnitude lower than the EDR where physical cell damage, as measured by lactate dehydrogenase release, was observed. While not as extensively investigated, a second monoclonal antibody produced in a different CHO clone exhibited the same glycosylation change at an intensive EDR, 2.9 x 10(5) W/m(3). Conversely, a low EDR of 0.9 x 10(2) W/m(3) had no effect on the glycosylation pattern. As 6.0 x 10(4) W/m(3), the lowest EDR that triggers the glycosylation shift, is about one order of magnitude higher than the estimated, maximum EDR in typically operated, large-scale stirred tank bioreactors, further studies in a lower EDR range of 1 x 10(3)-6.0 x 10(4) W/m(3) are needed to assess the glycosylation shift effect under typical large-scale bioreactor operation conditions. Follow-up studies in stirred tanks are also needed to confirm the glycosylation shift effect and to validate the repetitive hydrodynamic stress model.
Free, monovalent, SLeX (Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)-GlcNAc), SLn (Neu5Ac alpha 2-3Gal beta 1-4GlcNAc) and corresponding BSA-conjugated forms--displaying different ratios of SLeX and SLn to protein--were tested for their ability to inhibit binding of HL-60 cells to immobilized E-selectin. Free SLeX and conjugated SLeX-BSA inhibited cell binding in a dose-dependent manner. SLn and SLn-BSA did not inhibit binding. SLeX16BSA (16 mol tetrasaccharide/mol BSA) and monovalent SLeX inhibited cell binding with measured inhibitory concentrations (IC50S) of 1 microM and 1 mM, respectively, demonstrating a three-order-of-magnitude enhancement of inhibitory activity with the multivalent form of SLeX. A SLex7BSA conjugate was 10-fold less potent than those with 11 or 16 mol SLeX/mol BSA. An assay which measured neutrophil rolling on interleukin (IL)-1 beta-activated human umbilical vein endothelial cells (HUVECs) showed 50% reduction in the number of rolling neutrophils in the presence of 1 microM SLeX16BSA, whereas the level of free, monovalent SLeX oligosaccharide required to produce the same effect was approximately 0.3 mM. SLeX-BSA was found to be an excellent reagent for staining endothelial cells expressing E-selectin. Biotinylated SLeX-BSA in conjunction with Texas red avidin-stained lipopolysaccharide (LPS)-activated HUVECs, and co-incubation of activated cells with anti-E-selectin, specifically blocked staining. The distribution of E-selectin, as determined by binding of SLeX-BSA, was virtually identical with that obtained by binding of anti-E-selectin antibody.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.