The interactions between unpurified manufactured nanoparticles (NPs; iron oxide NPs, approximately 7 nm) and standard Suwannee River humic acid (SRHA) were investigated under a range of environmentally relevant conditions. At low pH, approximately 35% of the total iron was in the dissolved phase (< 1 kDa), present from the initial synthesis, whereas at pH more than 4, this concentration was negligible because of the formation of new particles via hydrolysis. Dynamic light scattering results indicated that extensive aggregation of NPs began at approximately pH 5 to 6 and reached a maximum at approximately pH 8.5, whereas with added SRHA, aggregation was shifted to lower pH values of 4 to 5 and was affected by SRHA concentration. Aggregation could be explained mainly by charge neutralization. Further, more detailed investigations by flow field-flow fractionation and transmission-electron microscopy were performed under a more restricted set of conditions (pH 2-6) to examine the aggregation process. Results indicated the formation of SRHA surface coating on iron oxide NPs of approximately 1 nm and the increase in thickness of this coating with the increase of SRHA concentration. Iron oxide NPs were shown to form increasingly large aggregates with increases in both pH (from 2 to 6) and SRHA concentration (from 0 to 25 mg/L). The structure and aggregation mechanism of these aggregates were found to be both pH and SRHA concentration dependent, with open, porous aggregates in the absence of SRHA and compact aggregates in the presence of SRHA.
Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment there is much uncertainty on exposure because of a fundamental lack of understanding and data regarding the fate, behavior and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO 2 ), and titanium dioxide (TiO 2 ) from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations measured using a wide range of analytical methods. Definitive uptake from the water column and localization of TiO 2 NPs in gills was demonstrated for the first time using coherent anti-Stokes Raman Scattering (CARS) microscopy. Zinc concentrations in zebrafish, and titanium in trout did not differ in exposed fish, compared with controls. Significant uptake of cerium occurred in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3µm) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.