DNA oligonucleotide complementary to sequences in the 5′ third of U3 snRNA were injected into Xenopus oocyte nuclei to disrupt endogenous U3 snRNA. The effect of this treatment on rRNA processing was examined. We found that some toads have a single rRNA processing pathway, whereas in other toads, two rRNA processing pathways can coexist in a single oocyte. U3 snRNA disruption in toads with the single rRNA processing pathway caused a reduction in 20S and ‘32S’ pre‐rRNA. In addition, in toads with two rRNA processing pathways, an increase in ‘36S’ pre‐rRNA of the second pathway is observed. This is the first in vivo demonstration that U3 snRNA plays a role in rRNA processing. Cleavage site #3 is at the boundary of ITS 1 and 5.8S and links all of the affected rRNA intermediates: 20S and ‘32S’ are the products of site #3 cleavage in the first pathway and ‘36S’ is the substrate for cleavage at site #3 in the second pathway. We postulate that U3 snRNP folds pre‐rRNA into a conformation dictating correct cleavage at processing site #3.
Based upon the three experimentally derived models of E. coli 23S rRNA (1-3) and the partial model for yeast 26S rRNA (4), which was deduced by homology to E. coli, we derived a secondary structure model for Xenopus laevis 28S rRNA. This is the first complete model presented for eukaryotic 28S rRNA. Compensatory base changes support the general validity of our model and offer help to resolve which of the three E. coli models is correct in regions where they are different from one another. Eukaryotic rDNA is longer than prokaryotic rDNA by virtue of introns, expansion segments and transcribed spacers, all of which are discussed relative to our secondary structure model. Comments are made on the evolutionary origins of these three categories and the processing fates of their transcripts. Functionally important sites on our 28S rRNA secondary structure model are suggested by analogy for ribosomal protein binding, the GTPase center, the peptidyl transferase center, and for rRNA interaction with tRNA and 5S RNA. We discuss how RNA-RNA interactions may play a vital role in translocation.
Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast origin of bidirectional replication with the use of replication initiation point mapping. The ARS1 origin of Saccharomyces cerevisiae showed a transition from discontinuous to continuous DNA synthesis in an 18-base pair region (nucleotides 828 to 845) from within element B1 toward B2, adjacent to the binding site for the origin recognition complex, the putative initiator protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.