We examined the roles of sex and spatial scale in habitat selection by Alaskan moose Alces alces gigas. We GPS‐collared 11 female and seven male adult moose in the Tongass National Forest, Alaska, USA, during 2002‐2004. We predicted that adult male and female moose would be spatially separated outside of the mating season, consistent with hypotheses attributing sexual segregation among sexually dimorphic ruminants to allometric differences in body and gastrointestinal size, and resulting differential needs for nutrient requirements by the sexes (the gastrocentric hypothesis), and varying risks of predation (the predation hypothesis) between sexes, especially for females with young. We predicted that habitat selection would be similar between sexes during the mating season, but dissimilar and occur at different scales during periods of late gestation and lactation. We expected that during segregation, females would select for a higher percentage of forested cover and a higher edge density than males to reduce predation risk on their young. Furthermore, we examined whether differences in scale of habitat selected between the sexes was related to home‐range size. Multi‐response Permutation Procedures (MRPP) analysis indicated that the spatial distributions of adult males and females differed, particularly near or during parturition. The sexes selected habitats similarly during the mating season (rut), when sexes generally were aggregated, whereas sexes exhibited differential habitat selection during spring, when sexes were segregated. Habitat selection by both sexes was best explained by vegetation and landscape composition tabulated within 1,000‐m radii centered on GPS locations of moose. The sexes did not differ in the scale at which they selected habitats. Mean size of the annual home range was 76 km2 for females and 125 km2 for males, but size of home range was not related to scale of habitat selection by moose. Our results indicate that females were likely selecting habitat with high‐quality forage while minimizing predation risk during periods of sexual segregation, whereas males were selecting habitat that allowed high forage intake, which together provide support for both the gastrocentric and the predation hypotheses.
Summary Aleutian Tern Onychoprion aleuticus numbers have been in steep decline at known Alaskan breeding colonies in recent decades (IUCN recently uplisted to ‘Vulnerable’). Available data suggest that most of the species may currently breed in Russia. Efforts to document global abundance and trends have been hampered by remoteness of colonies, lack of a formal monitoring programme, and the absence of reproducible population estimates with quantifiable errors, especially for large colonies. We surveyed four historically large colonies in Russia (2018) and Alaska (2019), which together may comprise 30–50% of the global breeding population. At each colony we obtained high resolution aerial photographs using a small Unmanned Aircraft System (sUAS). The large size of the colonies and the minimum altitude required to identify terns made it impractical to collect imagery of the entire colony. Instead, we employed a sampling approach, with sample locations selected based on spatially balanced acceptance sampling. Statistically sampled, low altitude sUAS images provided a fast, reproducible, and rigorous count of abundance for geographically large colonies, with low disturbance, and were generally consistent with concurrent ground-based observations. Concurrence among observers in photo counts indicated high precision in counts of attending birds and unattended nests, although species attribution in mixed tern colonies remains a source of significant uncertainty. Our results indicate that the four colonies surveyed here together supported <2,500 pairs of Aleutian Terns in the survey years. None of the colonies approached their peak size reported previously, likely due to recent predation, long-term decline, cold early season weather, or other factors. If these reduced colony sizes are representative of the current conditions, the implications for the global population would be dire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.