Background Ischemic stroke is an acquired brain injury with gender-dependent outcomes. A persistent obstacle in understanding the sex-specific neuroinflammatory contributions to ischemic brain injury is distinguishing between resident microglia and infiltrating macrophages—both phagocytes—and determining cell population-specific contributions to injury evolution and recovery processes. Our purpose was to identify microglial and macrophage populations regulated by ischemic stroke using morphology analysis and the presence of microglia transmembrane protein 119 (TMEM119). Second, we examined sex and menopause differences in microglia/macrophage cell populations after an ischemic stroke. Methods Male and female, premenopausal and postmenopausal, mice underwent either 60 min of middle cerebral artery occlusion and 24 h of reperfusion or sham surgery. The accelerated ovarian failure model was used to model postmenopause. Brain tissue was collected to quantify the infarct area and for immunohistochemistry and western blot methods. Ionized calcium-binding adapter molecule, TMEM119, and confocal microscopy were used to analyze the microglia morphology and TMEM119 area in the ipsilateral brain regions. Western blot was used to quantify protein quantity. Results Post-stroke injury is increased in male and postmenopause female mice vs. premenopause female mice (p < 0.05) with differences primarily occurring in the caudal sections. After stroke, the microglia underwent a region, but not sex group, dependent transformation into less ramified cells (p < 0.0001). However, the number of phagocytic microglia was increased in distal ipsilateral regions of postmenopausal mice vs. the other sex groups (p < 0.05). The number of TMEM119-positive cells was decreased in proximity to the infarct (p < 0.0001) but without a sex group effect. Two key findings prevented distinguishing microglia from systemic macrophages. First, morphological data were not congruent with TMEM119 immunofluorescence data. Cells with severely decreased TMEM119 immunofluorescence were ramified, a distinguishing microglia characteristic. Second, whereas the TMEM119 immunofluorescence area decreased in proximity to the infarcted area, the TMEM119 protein quantity was unchanged in the ipsilateral hemisphere regions using western blot methods. Conclusions Our findings suggest that TMEM119 is not a stable microglia marker in male and female mice in the context of ischemic stroke. Until TMEM119 function in the brain is elucidated, its use to distinguish between cell populations following brain injury with cell infiltration is cautioned.
effects of tumoral estrogen signaling in an estrogen receptor-positive breast cancer bone metastasis model.
Purpose: The purpose of this study was to explore the influence of oxidative stress (F2-isoprostanes) and inflammatory (interleukin [IL]-8) biomarkers on symptom trajectories during the first 18 months of childhood leukemia treatment. Method: A repeated-measures design was used to evaluate symptoms experienced by 218 children during treatment. A symptom cluster (fatigue, pain, and nausea) was explored over four time periods: initiation of post-induction therapy, 4 and 8 months into post-induction therapy, and the beginning of maintenance therapy (12 months postinduction). F2-isoprostanes and IL-8 were evaluated in cerebrospinal fluid (CSF) samples collected at baseline (diagnosis) and then at the four time periods. The longitudinal relationships of these biomarkers with the symptom cluster were examined using the longitudinal parallel process. Results: Pain and fatigue levels were highest during the post-induction phases of treatment and decreased slightly during maintenance therapy, while nausea scores were relatively stable. Even in the later phases of treatment, children continued to experience symptoms. CSF levels of the biomarkers increased during the post-induction phases of treatment. Early increases in the biomarkers were associated with more severe symptoms during the same period; patients who had increased biomarkers over time also experienced more severe symptoms over time. Conclusions: Findings reveal that children experienced symptoms throughout the course of leukemia treatment and support hypothesized longitudinal relationships of oxidative stress and inflammatory biomarkers with symptom severity. Activation of the biomarker pathways during treatment may explain underlying mechanisms of symptom experiences and identify which children are at risk for severe symptoms.
Background: During treatment for acute lymphoblastic leukemia (ALL), children report co-occurring symptoms of fatigue, sleep disturbance, pain, nausea, and depression as a symptom cluster. Central nervous system–directed ALL therapies also put children at risk for cognitive impairments. Cancer therapies can cause an increase in oxidative stress, which may contribute to treatment-related symptoms. This study examined the longitudinal relationships between biomarkers of oxidative stress in the cerebrospinal fluid, the Childhood Cancer Symptom Cluster–Leukemia (CCSC-L), and cognition, in children over the first year of ALL treatment. Methods: Glutathione (GSH) biomarkers of oxidative stress were measured in cerebrospinal fluid collected during treatment lumbar punctures. GSH biomarkers, symptoms, and cognitive function of 132 children aged 3 to 18 years were evaluated at four time points during the first year of leukemia treatment. Participants, 7 years and older, completed self-report measures, and parents reported for younger children. Cognitive function measurements for all participants were completed by parents. A longitudinal parallel-process model was used to explore the influence of the initial measurement and the subsequent change over four time points of the GSH biomarkers on the CCSC-L and cognition. Results: GSH biomarkers increased over the four time points indicating decreasing oxidative stress. When GSH biomarkers were higher (less oxidative stress) at the initial measurement, the CCSC-L severity was lower, cognition was better, and cognition improved over the four measurements. Screening children for high levels of oxidative stress would be a foundation for future intervention studies to address symptom distress and cognitive impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.