This study provides the first evidence that E(2) and environmental estrogens can significantly stimulate mammalian sperm capacitation, acrosome reactions and fertilizing ability, with the environmental estrogens being much more potent than E(2). The inability of hydroxytamoxifen to block these responses suggests that classical estrogen receptors may not be involved. Whether these responses have effects on fertility in vivo remains to be determined, along with the mechanisms of action involved.
FPP and adenosine modulate the adenylyl cyclase (AC)/cAMP signal transduction pathway in mammalian spermatozoa to elicit a biphasic response, initially stimulating capacitation and then inhibiting spontaneous acrosome loss. This study addressed the hypothesis that responses to FPP involve interactions between receptors for FPP and adenosine, the biphasic responses involving stimulatory and inhibitory adenosine receptors. Gln‐FPP, a competitive inhibitor of FPP, significantly inhibited binding of an adenosine analogue and responses to adenosine, especially in capacitated suspensions, consistent with interaction between FPP and adenosine receptors. CGS‐21680 (1 μM), a stimulatory A2a adenosine receptor agonist, significantly stimulated capacitation and cAMP in uncapacitated cells, while cyclopentyl adenosine (1 μM), an inhibitory A1 adenosine receptor agonist only affected capacitated cells, inhibiting spontaneous acrosome loss. Responses to FPP and adenosine were inhibited in uncapacitated cells by a selective A2a antagonist and in capacitated cells by a selective A1 antagonist; subsequent investigations indicated possible involvement of G proteins. Like FPP, cholera toxin stimulated capacitation and cAMP production in uncapacitated cells, suggesting involvement of a G protein with a Gαs subunit. In contrast, pertussis toxin prevented FPP's inhibition of both spontaneous acrosome loss and cAMP production, suggesting involvement of a Gαi/o subunit. Immunoblotting evidence revealed the presence of proteins of the appropriate molecular weights for Gαs, Gαi2, Gα i3, and Gαo subunits. This study provides the first direct evidence suggesting the involvement of two different types of adenosine receptors and both Gαs and Gαi/o subunits in the regulation of capacitation, resulting in modulation of AC activity and availability of cAMP. Mol. Reprod. Dev. 53:459–471, 1999. © 1999 Wiley‐Liss, Inc.
Capacitation is a pivotal event for mammalian spermatozoa, involving the loss of surface proteins known as decapacitation factors (DF) and consequent acquisition of fertilizing ability. Earlier studies showed that a mouse sperm DF binds to a receptor, DF-R, whose attachment to the sperm plasma membrane appears to involve a glycosylphosphatidylinositol (GPI) anchor. In the present study, purification and subsequent sequencing of DF-R has identified this , 23 kDa protein as phosphatidylethanolamine-binding protein 1 (PEBP 1). To obtain functional evidence that supports sequence homology data, purified recombinant PEBP 1 and PEBP 2 were evaluated for biological activity. While PEBP 1 was able to remove DF activity in solution at concentrations above , 1 nmol/l, PEBP 2 was ineffective, even at 600 nmol/l; this confirmed that DF-R is PEBP 1. Anti-PEBP 1 antiserum recognized recombinant PEBP 1 and a ,23 kDa protein in both mouse and human sperm lysates. Immunolocalization studies revealed that DF-R/PEBP 1 is located on the acrosomal cap, the post-acrosomal region and the flagellum of both mouse and human spermatozoa, with epitope accessibility being capacitation state-dependent and reversible. Treatment of cells with a phospholipase able to cleave GPI anchors essentially abolished immunostaining, thus confirming the extracellular location of DF-R/PEBP 1. We suggest that DF-R/PEBP 1 plays its fundamental role in capacitation by causing alterations in the sperm plasma membrane in both head and flagellum, with functional consequences for membrane-associated proteins. Obtaining more detail about DF $ DF-R interactions could lead to useful applications in both fertility treatments and new contraceptive approaches.
Human and mouse sperm responses to genistein are very similar, but human gametes appear to be even more sensitive. The mechanism of action may involve unregulated stimulation of cAMP production, leading to significant acrosome loss, undesirable because already acrosome-reacted cells are nonfertilizing. Xenobiotics were even more effective in combination. Since simultaneous exposure to low concentrations of multiple xenobiotics is likely to occur in animals and humans, further investigation is needed to determine whether this could impair fertility.
These experiments provide the first good evidence that mammalian spermatozoa have both beta-adrenergic receptors, known to stimulate cAMP production by membrane-associated adenylyl cyclases (mACs), and alpha2-adrenergic receptors, known to inhibit cAMP production by mACs. Responses are capacitation state dependent and provide a mechanism for inhibiting spontaneous acrosome reactions and helping to maintain fertilizing ability. These results suggest that the use of amphetamine-related compounds, either for medical or for social reasons, might have an unexpected positive impact on fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.