Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions. OPN is involved in normal physiological processes and is implicated in the pathogenesis of a variety of disease states, including atherosclerosis, glomerulonephritis, cancer, and several chronic inflammatory diseases. Through interactions with several integrins, OPN mediates cell migration, adhesion, and survival in many cell types. OPN also functions as a Th1 cytokine, promotes cell-mediated immune responses, and plays a role in chronic inflammatory and autoimmune diseases. Besides its function in inflammation, OPN is also a regulator of biomineralization and a potent inhibitor of vascular calcification.
Category A arenaviruses as defined by the National Institute of Allergy and Infectious Diseases (NIAID) are human pathogens that could be weaponized by bioterrorists. Many of these deadly viruses require biosafety level-4 (BSL-4) containment for all laboratory work, which limits traditional laboratory high-throughput screening (HTS) for identification of small molecule inhibitors. For those reasons, a related BSL-2 New World arenavirus, Tacaribe virus, 67-78% identical to Junín virus at the amino acid level, was used in a HTS campaign where approximately 400,000 small molecule compounds were screened in a Tacaribe virus-induced cytopathic effect (CPE) assay. Compounds identified in this screen showed antiviral activity and specificity against not only Tacaribe virus, but also the Category A New World arenaviruses (Junín, Machupo, and Guanarito). Drug resistant variants were isolated, suggesting that these compounds act through inhibition of a viral protein, the viral glycoprotein (GP2), and not through cellular toxicity mechanisms. A lead compound, ST-294, has been chosen for drug development. This potent and selective compound, with good bioavailability, demonstrated protective anti-viral efficacy in a Tacaribe mouse challenge model. This series of compounds represent a new class of inhibitors that may warrant further development for potential inclusion in a strategic stockpile.
The HtrA serine protease has been shown to be essential for bacterial virulence and for survival after exposure to many types of environmental and cellular stresses. A Listeria monocytogenes 10403S htrA mutant was found to be sensitive to oxidative and puromycin-induced stress at high temperatures, showed a reduced ability to form biofilms, and was attenuated for virulence in mice.
Osteopontin (OPN) is highly expressed by macrophages and plays a key role in the pathology of several chronic inflammatory diseases including atherosclerosis and the foreign body reaction. However, the molecular mechanism behind OPN regulation of macrophage functions is not well understood. OPN is a secreted molecule and interacts with several integrins via two domains: the RGD sequence binding to α(v) -containing integrins, and the SLAYGLR sequence binding to α(4) β(1), α(4) β(7), and α(9) β(1) integrins. Here we determined the role of OPN in macrophage survival, chemotaxis, and activation state. For survival studies, OPN treated-bone marrow derived macrophages (BMDMs) were challenged with growth factor withdrawal and neutralizing integrin antibodies. We found that survival in BMDMs is mediated primarily through the α(4) integrin. In chemotaxis studies, we observed that migration to OPN was blocked by neutralizing α(4) and α(9) integrin antibodies. Further, OPN did not affect macrophage activation as measured by IL-12 production. Finally, the relative contributions of the RGD and the SLAYGLR functional domains of OPN to leukocyte recruitment were evaluated in an in vivo model. We generated chimeric mice expressing mutated forms of OPN in myeloid-derived leukocytes, and found that the SLAYGLR functional domain of OPN, but not the RGD, mediates macrophage accumulation in response to thioglycollate-elicited peritonitis. Collectively, these data indicate that α(4) and α(9) integrins interacting with OPN via the SLAYGLR domain play a key role in macrophage biology by regulating migration, survival, and accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.