Cyclo-oxygenase (Cox), a rate-limiting enzyme in the synthesis of prostanoids, is encoded by two genes, Cox-1 and Cox-2, which are differentially expressed and regulated. Human Cox-1 and -2 polypeptides share 61% primary sequence identity. While the expression of Cox-1 is maximal in quiescent cells. Cox-2 expression is induced by growth factors and cytokines. We have screened a human genomic library with a probe from the 5'-untranslated region (UTR) of the human Cox-2 (hCox-2) cDNA and isolated two overlapping genomic clones. We have determined the DNA sequence of 0.8 kb upstream of the transcription start site, 6 kb of protein coding region, which includes 10 exons and 9 introns, as well as 2.5 kb of the 3'-UTR. The structures of the hCox-1 and hCox-2 and the murine TIS10 (Cox-2) genes are highly conserved, with a few exceptions. The 3'-UTRs of the Cox-1 and -2 genes are distinct; for example, the largest exon in the Cox-2 gene encodes the entire 3'-UTR, containing 22 copies of the 'AUUUA' RNA instability element. Sequence analysis of the 5'-flanking region has shown several potential transcription regulatory sequences, including a TATA box, a C/EBP motif, two AP-2 sites, three SP1 sites, two NF-kappa B sites, a CRE motif and an Ets-1 site. These efforts serve as a basis for future studies on transcriptional and post-transcriptional mechanisms of Cox-2 gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.