The CHEK2 kinase (Chk2 in mouse) is a member of a DNA damage response pathway that regulates cell cycle arrest at cell cycle checkpoints and facilitates the repair of dsDNA breaks by a recombination-mediated mechanism. There are numerous variants of the CHEK2 gene, at least one of which, CHEK2*1100delC (SNP), associates with breast cancer. A mouse model in which the wild-type Chk2 has been replaced by a Chk2*1100delC allele was tested for elevated risk of spontaneous cancer and increased sensitivity to challenge by a carcinogenic compound. Mice homozygous for Chk2*1100delC produced more tumors than wild-type mice, whereas heterozygous mice were not statistically different. When fractionated by gender, however, homozygous and heterozygous mice developed spontaneous tumors more rapidly and to a far greater extent than wild-type mice, indicative of a marked gender bias in mice harboring the variant allele. Consistent with our previous data showing elevated genomic instability in mouse embryonic fibroblasts (MEFs) derived from mice homozygous for Chk2*1100delC, the level of Cdc25A was elevated in heterozygous and homozygous MEFs and tumors. When challenged with the carcinogen 7,12-dimethylbenz[a]anthracene, all mice, regardless of genotype, had a reduced lifespan. Latency for mammary tumorigenesis was reduced significantly in mice homozygous for Chk2*1100delC but unexpectedly increased for the development of lymphomas. An implication from this study is that individuals who harbor the variant CHEK2*1100delC allele not only are at an elevated risk for the development of cancer but also that this risk can be further increased as a result of environmental exposure.cancer predisposition ͉ Cdc25A ͉ polymorphism
The polo-like kinases (Plks1-5) are emerging as an important class of proteins involved in many facets of cell cycle regulation and response to DNA damage and stress. Here we show that Plk3 phosphorylates the key cell cycle protein phosphatase Cdc25A on two serine residues in its cyclinB/cdk1 docking domain and regulates its stability in response to DNA damage. We generated a Plk3 knock-out mouse and show that Cdc25A protein from Plk3-deficient cells is less susceptible to DNA damage-mediated degradation than cells with functional Plk3. We also show that absence of Plk3 correlates with loss of the G1/S cell cycle checkpoint. However, neither this compromised DNA damage checkpoint nor reduced susceptibility to proteasome-mediated degradation after DNA damage translated into a significant increase in tumor incidence in the Plk3-deficient mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.