By site-directed mutagenesis, TEM-1 beta-lactamase was altered to contain single amino acid changes of E104K, R164S, and E240K, in addition to double changes of E104K/R164S or R164S/E240K and the triple change of E104K/R164S/E240K. Hydrolysis rates for cephaloridine and benzylpenicillin were lowered at least 1 order of magnitude for all enzymes containing R164S substitutions. All mutant enzymes exhibited increased kcat values for beta-lactam antibiotics containing an aminothiazole oxime side chain. Hydrolysis of ceftazidime was most affected, with kcat values increased 3-4 orders of magnitude in all enzymes with the substituted R164S moiety. Km values decreased for all substrates except ceftazidime in the enzymes with multiple mutations. Aztreonam was most affected, with Km values lowered 23-56-fold in the enzymes bearing multiple mutations. When the crystal structures of aztreonam and related monobactams were studied and projected into an active-site model of the PC1 beta-lactamase, it became apparent that the two lysine residues might serve equivalent roles by interacting with the carboxylate of the aminothiazole oxime side chain. Hydrogen-bonding interactions involving the oxime and N7 of the lysine, particularly Lys-104, may also be important in some antibiotics. Ser-164 apparently serves an indirect role, since it is somewhat distant from the active-site cleft.
Ceftazidime is widely used in the therapy of infectious complications in neutropenic patients. We studied an outbreak of ceftazidime-resistant gram-negative bacillary infections in pediatric cancer patients receiving empirical ceftazidime therapy for neutropenic fever. Fourteen isolates (12 KlebsieUla pneuwniawe and 2 Escherichia coli) from 13 patients were studied. Specimens were obtained from multiple clinical sites including blood, urine, throat, and lung. The organisms were resistant to ceftazidime, aztreonam, and penicillins but remained susceptible to cephamycins and imipenem. All resistant isolates produced a novel 13-lactamase (TEM-26) with a pl of approximately 5.58, which was transferred by transformation to E. coli on a 7.9-kb nonconjugative plasmid which cotransferred resistance to trimethoprim-sulfamethoxazole. This enzyme readily hydrolyzed ceftazidime, aztreonam, and penicillins in a spectrophotometric assay. DNA sequencing data suggest that TEM-26 is derived from TEM-1.
The authors review research on the effects of amphetamines on children, particularly hyperactive children in the classroom. They point out that there is no clear evidence these drugs should be prescribed as often as they are. The "hyperkinetic syndrome" remains vague both in its diagnosis and its etiology, and the mechanism of amphetamine action is unclear. The assumption that amphetamines have a paradoxical,calming effect on hyperactive children, unlike the stimulating effect they exert on adults, may accurately describe the apparent effects of the drugs on attention and other aspects of socially accepted classroom behavior, but it does not justify the interpretation that amphetamine effects are qualitatively different for children than for adults, without the same potential for harm. The authors conclude that the possible adverse effects of these drugs and their unknown long-term risks require that we consider the present policy of amphetamine administration in the schools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.