Syllables play an important role in speech synthesis and recognition. We present several different approaches to the syllabification of phonemes. We investigate approaches based on linguistic theories of syllabification, as well as a discriminative learning technique that combines Support Vector Machine and Hidden Markov Model technologies. Our experiments on English, Dutch and German demonstrate that our transparent implementation of the sonority sequencing principle is more accurate than previous implementations, and that our language-independent SVM-based approach advances the current state-of-the-art, achieving word accuracy of over 98% in English and 99% in German and Dutch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.