The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Insulin resistance is a manifestation of both diabetes mellitus and obesity. However, the mechanism is still not clearly identified. Herein, we describe a procedure that allows us to evaluate the development of insulin resistance in 3T3-L1 adipocytes. Under these conditions, we show that the concentration of insulin required for 50% desensitization of glucose transport activity is 100 pM; maximal desensitization could be achieved with 1 nM. This demonstrates for the first time that 3T3-L1 adipocytes develop insulin resistance in response to physiologically relevant concentrations of insulin. Glucose (or glucosamine), in addition to insulin, was required to establish desensitization. The expression of GLUT4 protein decreased by 50% with exposure to 10 nM insulin. The dose-dependent loss of GLUT4 was similar to the dose dependence for insulin-resistant transport activity. Translocation in the presence of acute insulin was apparent, but the extent of recruitment directly reflected the decrease in GLUT4 protein. GLUT4 mRNA also declined, but the ED 50 was approximately 5 nM. Together, these data suggest that the loss of GLUT4 protein likely underlies the cause of desensitization. However, the loss of GLUT4 protein did not correlate with the loss in GLUT4 mRNA suggesting post-translational control of GLUT4 expression.
Carbonic anhydrase IX (CAIX) is a membrane-bound, tumorrelated enzyme whose expression is often considered a marker for hypoxia, an indicator of poor prognosis in the majority of cancer patients, and is associated with acidification of the tumor microenvironment. Here, we describe for the first time the catalytic properties of native CAIX in MDA-MB-231 breast cancer cells that exhibit hypoxia-inducible CAIX expression. Using 18 O exchange measured by membrane inlet mass spectrometry, we determined catalytic activity in membrane ghosts and intact cells. Exofacial carbonic anhydrase activity increases with exposure to hypoxia, an activity which is suppressed by impermeant sulfonamide CA inhibitors. Inhibition by sulfonamide inhibitors is not sensitive to reoxygenation. CAIX activity in intact cells increases in response to reduced pH. Data from membrane ghosts show that the increase in activity at reduced pH is largely due to an increase in the dehydration reaction. In addition, the kinetic constants of CAIX in membrane ghosts are very similar to our previous measurements for purified, recombinant, truncated forms. Hence, the activity of CAIX is not affected by the proteoglycan extension or membrane environment. These activities were measured at a total concentration for all CO 2 species at 25 mM and close to chemical equilibrium, conditions which approximate the physiological extracellular environment. Our data suggest that CAIX is particularly well suited to maintain the extracellular pH at a value that favors the survival fitness of tumor cells.The carbonic anhydrase (CA) 2 family of proteins are metalloenzymes that catalyze the reversible hydration of carbon dioxide:This reaction is fundamental to a variety of biological processes, including respiration, renal tubular acidification, and fluid secretion (1). The mammalian CAs belong to a single gene family that is referred to as the ␣-CAs. There are 16 isozymes or CA-related proteins in this group that differ in their kinetic and inhibitory properties, cell and tissue distribution, and function (2). Two of the catalytically active members of this family, carbonic anhydrase IX (CAIX) and carbonic anhydrase XII, are specifically tumorrelated (3). Of these two, CAIX has garnered more interest because of its limited normal expression (4, 5) and its apparent role in cell proliferation and migration (6), cell adhesion (7), and pH control (8 -10). CAIX is a transmembrane glycoprotein whose catalytic domain is oriented toward the extracellular milieu (11). In breast cancer, CAIX is a marker for hypoxic regions of tumors (12), is associated with poor prognosis (13,14), and is linked to acidification of the tumor microenvironment (10) that favors cancer cell survival and resistance to chemotherapeutic agents (15). CAIX expression has also been linked to the basal B, triple-negative phenotype (16, 17), an aggressive breast cancer for which there are few treatment options. Thus, CAIX may represent a new and valuable target in the visualization, diagnosis, and treatment of ...
Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.