We studied nine presumed nongenotoxic rodent carcinogens, as defined by the U.S. National Toxicology Program (NTP), to determine their ability to induce acute or subacute biochemical and tissue changes that may act as useful predictors of nongenotoxic rodent carcinogenesis. The chemicals selected included six liver carcinogens (two of which are peroxisome proliferators), three thyroid gland carcinogens, and four kidney carcinogens. We administered the chemicals (diethylhexyl phthalate, cinnamyl anthranilate, chlorendic acid, 1,4-dichlorobenzene, monuron, ethylene thiourea, diethyl thiourea, trimethyl thiourea, and d-limonene to the same strains of mice and rats used in the original NTP bioassays (nine chemicals to rats and seven to mice). Selected tissues (liver, thyroid gland, and kidney) were collected from groups of animals at 7, 28, and 90 days for evaluation. Tissue changes selected for study were monitored for all of the test groups, irrespective of the specificity of the carcinogenic responses observed in those tissues. This allowed us to assess both the carcinogen specificity and the carcinogen sensitivity of the events being monitored. We studied relative weight, cell labeling indices, and pathologic changes such as hypertrophy in all tissues; a range of cytochrome P450 enzymes and palmitoyl coenzyme A oxidase in the liver; changes in the levels of plasma total triiodothyronine, total thyroxine, and thyroid-stimulating hormone (TSH) as markers of thyroid gland function; and hyaline droplet formation, tubular basophilia, and the formation of granular casts in the kidney. There were no single measurements that alerted specifically to the carcinogenicity of the agents to the rodent liver, thyroid gland, or kidney. However, in the majority of cases, the chemical induction of cancer in a tissue was preceded by a range of biochemical/morphologic changes, most of which were moderately specific for a carcinogenic outcome, and some of which were highly specific for it (e.g., increases in TSH in the thyroid gland and increases in relative liver weight in the mouse). The only measurements that failed to correlate usefully with carcinogenicity were the induction of liver enzymes (with the exception of the enzymes associated with peroxisome proliferation). Most of the useful markers were evident at the early times studied (7 days and 28 days), but no overall best time for the measurement of all markers was identified. The judicious choice of markers and evaluation times can aid the detection of potential nongenotoxic rodent carcinogens.