Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.