BACKGROUND:Our purpose was to establish a mass spectrometry reference measurement procedure (RMP) for cholesterol to use in the CDC's standardization programs. We explored a gas chromatography-isotope dilution mass spectrometry (GC-IDMS) procedure using a multilevel standard calibration curve to quantify samples with varying cholesterol concentrations.
BACKGROUND The CDC's Lipid Standardization Program established the chromotropic acid (CA) reference measurement procedure (RMP) as the accuracy base for standardization and metrological traceability for triglyceride testing. The CA RMP has several disadvantages, including lack of ruggedness. It uses obsolete instrumentation and hazardous reagents. To overcome these problems the CDC developed an isotope dilution GC-MS (ID-GC-MS) RMP for total glycerides in serum. METHODS We diluted serum samples with Tris-HCl buffer solution and spiked 200-μL aliquots with [13C3]-glycerol. These samples were incubated and hydrolyzed under basic conditions. The samples were dried, derivatized with acetic anhydride and pyridine, extracted with ethyl acetate, and analyzed by ID-GC-MS. Linearity, imprecision, and accuracy were evaluated by analyzing calibrator solutions, 10 serum pools, and a standard reference material (SRM 1951b). RESULTS The calibration response was linear for the range of calibrator concentrations examined (0–1.24 mmol/L) with a slope and intercept of 0.717 (95% CI, 0.7123–0.7225) and 0.3122 (95% CI, 0.3096–0.3140), respectively. The limit of detection was 14.8 μmol/L. The mean %CV for the sample set (serum pools and SRM) was 1.2%. The mean %bias from NIST isotope dilution MS values for SRM 1951b was 0.7%. CONCLUSIONS This ID-GC-MS RMP has the specificity and ruggedness to accurately quantify total glycerides in the serum pools used in the CDC's Lipid Standardization Program and demonstrates sufficiently acceptable agreement with the NIST primary RMP for total glyceride measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.