Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low µg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.Proteomic technologies based on mass spectrometry (MS) have emerged as preferred components of a strategy for discovery of diagnostic, prognostic and therapeutic protein biomarkers. Because of the stochastic sampling of proteomes in unbiased analyses and the associated high false-discovery rate, tens to hundreds of potential biomarkers are often reported in discovery studies. Those few that will ultimately show sufficient sensitivity and specificity for a given medical condition must thus be culled from lengthy lists of candidates -a particularly challenging aspect of the biomarker-development pipeline and currently its main limiting step. In this context, it is highly desirable to verify, by more targeted quantitative methods, the levels of candidate biomarkers in body fluids, cells, tissues or organs from healthy individuals and affected patients in large enough sample numbers to confirm statistically relevant differences 1, 2. Verification of novel biomarkers has relied primarily on the use of sensitive, specific, high-throughput immunoassays, whose development depends critically on the availability of suitable well-characterized antibodies. However, antibody reagents of sufficient specificity and sensitivity to assay novel protein biomarkers in plasma are generally not available. The high cost and long development time required to generate high-quality immunoassay reagents, as well as technical limitations in multiplexing immunoassays for panels of biomarkers, is strong motivation to develop more straightforward quantitative approaches exploiting the sensitivity and molecular specificity of mass spectrometry.Recently, multiple reaction monitoring (MRM) coupled with stable isotope dilution (SID)-MS for direct quantification of proteins in cell lysates as well as human plasma and serum has been shown to have considerable promise 3- RESULTS Study de...
Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments From the ‡Broad Institute of MIT and Harvard, Cambridge, Massachusetts; §Eli
Liquid chromatography (LC) prefractionation is often implemented to increase proteomic coverage; however, while effective, this approach is laborious, requires considerable sample amount, and can be cumbersome. We describe how interfacing a recently described high-field asymmetric waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer (MS) enables the collection of single-shot proteomic data with comparable depth to that of conventional two-dimensional LC approaches. This next generation FAIMS device incorporates improved ion sampling at the ESI-FAIMS interface, increased electric field strength, and a helium-free ion transport gas. With fast internal compensation voltage (CV) stepping (25 ms/transition), multiple unique gas-phase fractions may be analyzed simultaneously over the course of an MS analysis. We have comprehensively demonstrated how this device performs for bottom-up proteomics experiments as well as characterized the effects of peptide charge state, mass loading, analysis time, and additional variables. We also offer recommendations for the number of CVs and which CVs to use for different lengths of experiments. Internal CV stepping experiments increase protein identifications from a single-shot experiment to >8000, from over 100 000 peptide identifications in as little as 5 h. In single-shot 4 h label-free quantitation (LFQ) experiments of a human cell line, we quantified 7818 proteins with FAIMS using intra-analysis CV switching compared to 6809 without FAIMS. Single-shot FAIMS results also compare favorably with LC fractionation experiments. A 6 h single-shot FAIMS experiment generates 8007 protein identifications, while four fractions analyzed for 1.5 h each produce 7776 protein identifications.
Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target. For this reason, we investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide signal intensity and compared it with the empirical optimization of the CE for each peptide and transition individually. Using optimized linear equations, the difference between predicted and empirically derived CE values was found to be an average gain of only 7.8% of total peak area. We also found that existing commonly used linear equations fall short of their potential, and should be recalculated for each charge state and when introducing new instrument platforms. We provide a fully automated pipeline for calculating these equations and individually optimizing CE of each transition on SRM instruments from Agilent, Applied Biosystems, Thermo-Scientific and Waters in the open source Skyline software tool (http://proteome.gs.washington.edu/software/skyline).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.