Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than non-malignant cells due to genetic alterations and abnormal growth and as a result, maintenance of the anti-oxidant glutathione (GSH) is essential for their survival and proliferation1–3. Under elevated ROS conditions endogenous l-Cysteine (l-Cys) production is insufficient for GSH synthesis, necessitating l-Cys uptake, predominantly in its disulfide form l-Cystine (CSSC) via the xCT(−) transporter. Here we show that administration of an engineered, pharmacologically optimized, human Cyst(e)inase enzyme mediates sustained depletion of the extracellular l-Cys and CSSC pool in mice and non-human primates, selectively causes cell cycle arrest and death (PI and Annexin-V staining) in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS, yet results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53−/− mice that develop disease resembling human chronic lymphocytic leukemia. The observation that enzyme-mediated depletion of the serum l-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods suggests that Cyst(e)inase represents a safe and effective therapeutic modality for inactivating anti-oxidant cellular responses in a wide range of malignancies4,5.
A novel recombinant human growth hormone (rhGH) fusion protein (VRS-317) was designed to minimize receptor-mediated clearance through a reduction in receptor binding without mutations to rhGH by genetically fusing with XTEN amino acid sequences to the N-terminus and the C-terminus of the native hGH sequence. Although in vitro potency of VRS-317 was reduced approximately 12-fold compared with rhGH, in vivo potency was increased because of the greatly prolonged exposure to the target tissues and organs. VRS-317 was threefold more potent than daily rhGH in hypophysectomized rats and fivefold more potent than daily rhGH in juvenile monkeys. In juvenile monkeys, a monthly dose of 1.4 mg/kg VRS-317 (equivalent to 0.26 mg/kg rhGH) caused a sustained pharmacodynamic response for 1 month equivalent to 0.05 mg/kg/day rhGH (1.4 mg/kg rhGH total over 28 days). In monkeys, VRS-317, having a terminal elimination half-life of approximately 110 h, was rapidly and near-completely absorbed, and was well tolerated with no observed adverse effects after every alternate week subcutaneous dosing for 14 weeks. VRS-317 also did not cause lipoatrophy in pig and monkey studies. VRS-317 is currently being studied in GH-deficient patients to confirm the observations in these animal studies. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:2744–2754, 2012
Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency.
Purpose: The antitumor activities and pharmacokinetics of the hypoxia-activated cytotoxin AQ4N and its metabolites were assessed in several preclinical models of pancreatic cancers. Experimental Design: The cytotoxic effects of AQ4N prodrug and its bioreduced form, AQ4, were tested against multiple human tumor cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Nude mice bearing s.c. or orthotopically implanted human BxPC-3 or Panc-1tumor cells were treated with AQ4N. Tumor growth inhibition, time to progression/end point, and liver metastasis were evaluated in treatment versus control groups. Plasma and tumor levels of AQ4N and its metabolites were quantitated by liquid chromatography-tandem mass spectrometry. Results: In contrast to AQ4N, the bioreduced AQ4 metabolite displayed potent cytotoxicity in many human tumor lines, including those derived from human pancreatic adenocarcinomas. Single-agent administration of AQ4N significantly delayed tumor growth, progression, and survival in a manner comparable with gemcitabine in multiple pancreatic tumor models in vivo. Survival increases were accompanied by a reduction in incidence and spread of liver metastasis. Quantitation of AQ4N and its metabolites in tumor-bearing mice showed that the prodrug is rapidly cleared from the circulation by 24 h and neither of the bioreduced metabolites was detected in plasma. In contrast, AQ4N readily penetrated BxPC-3 tumors and the cytotoxic AQ4 metabolite rapidly accumulated in tumor tissues at high levels in a dose-dependent fashion. Conclusion: AQ4N undergoes rapid and selective conversion into the potent antineoplastic metabolite AQ4 in tumors in vivo and provides proof of principle for the use of hypoxia-activated prodrugs in the treatment against pancreatic cancers.
ObjectivesGlucagon-like peptide 2 (GLP2) is an intestinal growth factor that has been shown to stimulate intestinal growth and reduce disease severity in preclinical models of short bowel syndrome and inflammatory bowel disease. Teduglutide, a recombinant human GLP2 variant (GLP2-2G), has increased half-life and stability as compared to the native GLP2 peptide, but still requires twice daily dosing in preclinical models and daily dosing in the clinic. The goal of this study was to produce and characterize the preclinical pharmacokinetic and therapeutic properties of GLP2-2G-XTEN, a novel, long-acting form of GLP2-2G.Methodology and ResultsA GLP2-2G-XTEN fusion protein with extended exposure profile was produced by genetic fusion of GLP2-2G peptide to XTEN, a long, unstructured, non-repetitive, hydrophilic sequence of amino acids. The serum half-life of GLP2-2G-XTEN in mice, rats and monkeys was 34, 38 and 120 hours, respectively. Intestinotrophic effects were demonstrated in normal rats, where GLP2-2G-XTEN administration resulted in a significant increase in both small intestine weight and length. Efficacy of the GLP2-2G-XTEN protein was compared to that of GLP2-2G peptide in a rat Crohn’s disease model, indomethacin-induced inflammation. Prophylactic administration of GLP2-2G-XTEN significantly increased the length, reduced the number of trans-ulcerations and adhesions, and reduced the TNFα content of the small intestine. GLP2-2G-XTEN demonstrated greater in vivo potency as compared to GLP2-2G peptide, and improvement in histopathology supported the GLP2-2G-XTEN treatment effects.Conclusions and SignificanceGLP2-2G-XTEN is intestinotrophic and demonstrates efficacy in a rat Crohn’s disease model requiring a lower molar dose and less frequent dosing relative to GLP2-2G peptide. Allometric scaling based on pharmacokinetics from mouse, rat and monkey projects a human half-life of 240 hours. These improvements in preclinical pharmacokinetics and dosing indicate that GLP2-2G-XTEN may offer a superior therapeutic benefit for treatment of gastrointestinal diseases including Crohn’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.