Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.
The plastid genome of the cryptophyte alga Guillardia theta (121,524 bp) has been completely sequenced. The genome is 33% G+C and contains a short, nonidentical inverted repeat (4.9 kb) encoding the two rRNA cistrons. The large and small single-copy regions are 96.3 and 15.4 kb, respectively. Forty-six genes encoding proteins for photosynthesis, 5 genes for biosynthetic function, 5 genes involved in replication and division, 30 tRNA genes, 44 ribosomal protein genes (26 large subunit and 18 small subunit), 3 translation factors, 8 genes encoding components of the transcriptional machinery including 3 ycfs (hypothetical chloroplast frames), and 26 additional ycfs have been identified. There are eight ORFs larger than 50 amino acids, 3 of which have homologues on the plastid genome of the rhodophyte, Porphyra purpurea (Reith and Munholland 1995) and/or the Synechocystis genome (Kaneko et al. 1996) and can be designated new ycfs. Intergenic spacers are very short, no introns have been detected, and several genes overlap, all resulting in a very compact genome. In addition, large clusters of genes (such as those for the ribosomal proteins) are organized into single transcriptional units (Wang et al. 1997), again resulting in an economically organized genome. The cryptophyte plastid genome is almost completely comprised of clusters of genes that are found on the rhodophyte Porphyra purpurea, confirming its common ancestry with red algae. Furthermore, recombination events involving both tRNA genes and the rRNA cistrons appear to have been responsible for the structure of the cryptophyte plastid genome, including the formation of the inverted repeat.
IntroductionCationic antimicrobial peptides (CAPs) defend against microbial pathogens; however, certain CAPs also exhibit anticancer activity. The purpose of this investigation was to determine the effect of the pleurocidin-family CAPs, NRC-03 and NRC-07, on breast cancer cells.MethodsMTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) and acid phosphatase cell-viability assays were used to assess NRC-03- and NRC-07-mediated killing of breast carcinoma cells. Erythrocyte lysis was determined with hemolysis assay. NRC-03 and NRC-07 binding to breast cancer cells and normal fibroblasts was assessed with fluorescence microscopy by using biotinylated-NRC-03 and -NRC-07. Lactate dehydrogenase-release assays and scanning electron microscopy were used to evaluate the effect of NRC-03 and NRC-07 on the cell membrane. Flow-cytometric analysis of 3,3'-dihexyloxacarbocyanine iodide- and dihydroethidium-stained breast cancer cells was used to evaluate the effects of NRC-03 and NRC-07 on mitochondrial membrane integrity and reactive oxygen species (ROS) production, respectively. Tumoricidal activity of NRC-03 and NRC-07 was evaluated in NOD SCID mice bearing breast cancer xenografts.ResultsNRC-03 and NRC-07 killed breast cancer cells, including drug-resistant variants, and human mammary epithelial cells but showed little or no lysis of human dermal fibroblasts, umbilical vein endothelial cells, or erythrocytes. Sublethal doses of NRC-03 and, to a lesser extent, NRC-07 significantly reduced the median effective concentration (EC50) of cisplatin for breast cancer cells. NRC-03 and NRC-07 bound to breast cancer cells but not fibroblasts, suggesting that killing required peptide binding to target cells. NRC-03- and NRC-07-mediated killing of breast cancer cells correlated with expression of several different anionic cell-surface molecules, suggesting that NRC-03 and NRC-07 bind to a variety of negatively-charged cell-surface molecules. NRC-03 and NRC-07 also caused significant and irreversible cell-membrane damage in breast cancer cells but not in fibroblasts. NRC-03- and NRC-07-mediated cell death involved, but did not require, mitochondrial membrane damage and ROS production. Importantly, intratumoral administration of NRC-03 and NRC-07 killed breast cancer cells grown as xenografts in NOD SCID mice.ConclusionsThese findings warrant the development of stable and targeted forms of NRC-03 and/or NRC-07 that might be used alone or in combination with conventional chemotherapeutic drugs for the treatment of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.