Hemoglobin degradation in intraerythrocytic malaria parasites is a vast process that occurs in an acidic digestive vacuole. Proteases that participate in this catabolic pathway have been defined. Studies of protease biosynthesis have revealed unusual targeting and activation mechanisms. Oxygen radicals and heme are released during proteolysis and must be detoxified by dismutation and polymerization, respectively. The quinoline antimalarials appear to act by preventing sequestration of this toxic heme. Understanding the disposition of hemoglobin has allowed identification of essential processes and metabolic weakpoints that can be exploited to combat this scourge of mankind.
Plasmodium falciparum is the major causative agent of malaria, a disease of worldwide importance. Resistance to current drugs such as chloroquine and mefloquine is spreading at an alarming rate, and our antimalarial armamentarium is almost depleted. The malarial parasite encodes two homologous aspartic proteases, plasmepsins I and II, which are essential components of its hemoglobindegradation pathway and are novel targets for antimalarial drug development. We have determined the crystal structure of recombinant plasmepsin II complexed with pepstatin A. This represents the first reported crystal structure of a protein from P. falciparum. The crystals contain molecules in two different conformations, revealing a remarkable degree of interdomain flexibility of the enzyme. The structure was used to design a series of selective low molecular weight compounds that inhibit both plasmepsin H and the growth ofP.falciparum in culture.
Intraerythrocytic malaria parasites rapidly degrade virtually all of the host cell hemoglobin. We have cloned the gene for an aspartic hemoglobinase that initiates the hemoglobin degradation pathway in Plasmodium falciparum. It encodes a protein with 35% homology to human renin and cathepsin D, but has an unusually long pro‐piece that includes a putative membrane spanning anchor. Immunolocalization studies place the enzyme in the digestive vacuole and throughout the hemoglobin ingestion pathway, suggesting an unusual protein targeting route. A peptidomimetic inhibitor selectively blocks the aspartic hemoglobinase, prevents hemoglobin degradation and kills the organism. We conclude that Plasmodium hemoglobin catabolism is a prime target for antimalarial chemotherapy and have identified a lead compound towards this goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.