Mmany genes from the X chromosome are expressed at the same level in female and male embryos during early Drosophila development, prior to the establishment of MSL-mediated dosage compensation, suggesting the existence of a novel mechanism.
Segmentation in Drosophila embryogenesis occurs through a hierarchical cascade of regulatory gene expression driven by the establishment of a diffusion-mediated morphogen gradient. Here, we investigate the response of this pattern formation process to genetic variation and evolution in egg size. Specifically, we ask whether spatial localization of gap genes Kruppel (Kr) and giant (gt) and the pair-rule gene even-skipped (eve) during cellularization is robust to genetic variation in embryo length in three Drosophila melanogaster isolines and two closely related species. We identified two wild-derived strains of D. melanogaster whose eggs differ by Ϸ25% in length when reared under identical conditions. These two lines, a D. melanogaster laboratory stock (w1118), and offspring from crosses between the lines all exhibit precise scaling in the placement of gap and pair-rule gene expression along the anterior-posterior axis in relation to embryo length. Genetic analysis indicates that this scaling is maternally controlled. Maternal regulation of scaling must be required for consistent localization of segmentation gene expression because embryo size, a genetically variable and adaptive trait, is maternally inherited. We also investigated spatial scaling between these D. melanogaster lines and single lines of Drosophila sechellia and Drosophila simulans, the latter two differing by Ϸ25% in egg length. In contrast to the robust scaling we observed within species, localization of gene expression relative to embryo length differs significantly between the three species. Thus, the developmental mechanism that assures robust scaling within a species does not prevent rapid evolution between species.buffering ͉ development ͉ embryo size ͉ genetic variation ͉ scaling
To better characterize how variation in regulatory sequences drives divergence in gene expression, we undertook a systematic study of transcription factor binding and gene expression in blastoderm embryos of four species, which sample much of the diversity in the 40 million-year old genus Drosophila: D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. We compared gene expression, measured by mRNA-seq, to the genome-wide binding, measured by ChIP-seq, of four transcription factors involved in early anterior-posterior patterning. We found that mRNA levels are much better conserved than individual transcription factor binding events, and that changes in a gene's expression were poorly explained by changes in adjacent transcription factor binding. However, highly bound sites, sites in regions bound by multiple factors and sites near genes are conserved more frequently than other binding, suggesting that a considerable amount of transcription factor binding is weakly or non-functional and not subject to purifying selection.
The earliest stages of animal development are controlled by maternally deposited mRNA transcripts and proteins. Once the zygote is able to transcribe its own genome, maternal transcripts are degraded, in a tightly regulated process known as the maternal to zygotic transition (MZT). While this process has been well-studied within model species, we have little knowledge of how the pools of maternal and zygotic transcripts evolve. To characterize the evolutionary dynamics and functional constraints on early embryonic expression, we created a transcriptomic dataset for 14 Drosophila species spanning over 50 million years of evolution, at developmental stages before and after the MZT, and compared our results with a previously published Aedes aegypti developmental time course. We found deep conservation over 250 million years of a core set of genes transcribed only by the zygote. This select group is highly enriched in transcription factors that play critical roles in early development. However, we also identify a surprisingly high level of change in the transcripts represented at both stages over the phylogeny. While mRNA levels of genes with maternally deposited transcripts are more highly conserved than zygotic genes, those maternal transcripts that are completely degraded at the MZT vary dramatically between species. We also show that hundreds of genes have different isoform usage between the maternal and zygotic genomes. Our work suggests that maternal transcript deposition and early zygotic transcription are remarkably dynamic over evolutionary time, despite the widespread conservation of early developmental processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.