The ␣-helix-rich, hydrophobic transmembrane (T) domain of diphtheria toxin is believed to play a central role in membrane insertion by the toxin and in the translocation of its catalytic domain across membranes. In this report, T domain structure was studied using site-directed single-Cys mutants. The residues chosen, 322 (near the amino-terminal end of helix TH8), 333 (within helix TH8), and 356 (within helix TH9) were substituted with Cys and labeled with the fluorescent probe bimane. (Residues 333 and 356 should be located within the bilayer in the transmembrane state, and residue 322 should not penetrate the bilayer.) After insertion of T domain into model membrane vesicles, the location of bimane label relative to the lipid bilayer was characterized by its fluorescence emission and by its quenching with nitroxide-labeled phospholipids. It was found that when the T domain is added to dioleoylphosphatidylcholine-containing vesicles, all three residues reside close to the outer surface. However, at high T domain concentration or in thinner dimyristoleoylphosphatidylcholine-containing vesicles, a large fraction of residues 333 and 356 penetrate deeply into the membrane. In contrast, residue 322 remains exposed to aqueous solution under these conditions. These conclusions were confirmed by a novel antibody binding method. Antibodies that quench the fluorescence of 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene (BODIPY) groups were used to evaluate the exposure of BODIPYlabeled 322, 333, and 356. Maximum exposure of residues 333 and 356 to externally added antibody was only observed under conditions in which bimane fluorescence showed that these residues do not penetrate the bilayer. In contrast, residue 322 remained exposed under all conditions. We propose that the deeply penetrating T domain conformation represents a transmembrane or near-transmembrane state. The regulation of the transmembrane/nontransmembrane equilibrium should be a key to understanding diphtheria toxin membrane insertion and translocation. Our results suggest that toxintoxin interactions may play an important role in regulating this behavior.Diphtheria toxin is a protein secreted by Corynebacterium diphtheriae. It can be split into two chains, A (21 kDa) and B (37 kDa), joined by a disulfide bond (1). The crystal structure of the toxin shows that it consists of three domains (2-5). The A chain is the catalytic (C) domain. The B chain contains the transmembrane (T) and receptor binding (R) domains. Membrane penetration is believed to occur after the toxin reaches endosomes (6). The low pH within the endosomal lumen induces a partial unfolding of the toxin, resulting in exposure of the hydrophobic regions and translocation of the A chain of the toxin into the cytoplasm (6). Once in the cytoplasm, the A chain catalyzes the transfer of the ADP-ribosyl group of NAD ϩ to elongation factor 2, inactivating protein synthesis.The T domain is made up of nine ␣-helices, several of which contain hydrophobic sequences that play a critical role in...
It is well documented that removal of the V1V2 region or of the V2 loop alone from the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) increases the susceptibility of these viruses to neutralization by antibodies. The specific role of the V1 loop in defining the neutralization susceptibility of HIV is, however, not well documented. Our current studies indicate that although the V1V2 region is a global modulator of the HIV-1 neutralization susceptibility, the individual roles the V1 and V2 loops have in defining the neutralization susceptibility profile of HIV-1 differ and in some cases are opposite. While deletion of the V2 loop renders the virus more susceptible to neutralization by antibodies that recognize diverse epitopes, in particular certain ones located in the CD4 binding site and the V3 loop, deletion of the V1 loop renders the virus refractory to neutralization, especially by antibodies that recognize CD4-induced epitopes and certain CD4-site binding antibodies. Our current studies also indicate that the relative involvement of the V2 loop of the HIV-1 envelope during virus-cell entry appears to be envelope background dependent. As a result, although deletion of the V2 loop from the clade B, R5-tropic SF162 HIV-1 virus resulted in a virus that was replication competent, the same modification introduced on the background of two other R5-tropic isolates, SF128A (clade B) or SF170 (clade A), abrogated the ability of these envelopes to mediate virus-cell entry.
The transmembrane (T) domain of diphtheria toxin has a critical role in the low pH-induced translocation of the catalytic domain (A chain) of the toxin across membranes. Here it is shown that at low pH, addition of proteins in a partly unfolded, molten globule-like conformation converted the T domain from a shallow membrane-inserted form to its transmembrane form. Fluorescence energy transfer demonstrated that molten globule-like proteins bound to the T domain. Thus, the T domain recognizes proteins that are partly unfolded and may function in translocation of the A chain as a transmembrane chaperone.
We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.