A purified recombinant spike (S) protein was studied for its effect on stimulating human peripheral blood monocyte macrophages (PBMC). We examined inflammatory gene mRNA abundances found in S protein-treated PBMC using gene arrays. We identified differential mRNA abundances of genes with functional properties associated with antiviral (CXCL10) and inflammatory (IL-6, IL-8) responses. We confirmed cytokine mRNA increases by real time quantitative(q) RT-PCR or ELISA. We further analyzed the sensitivity and specificity of the prominent IL-8 response. By real time qRT-PCR, S protein was shown to stimulate IL-8 mRNA accumulation in a dose dependent manner while treatment with E protein did not. Also, titration of S protein-specific production and secretion of IL-8 by ELISA showed that the dose of 5.6nM of S produced a significant increase in IL-8 (p=0.003) compared to mock-treated controls. The increase in IL-8 stimulated by a concentration of 5.6 nM of S was comparable to concentrations seen for S protein binding to ACE2 or to neutralizing monoclonal antibody suggesting a physiological relevance. An NF-κB inhibitor, TPCK (N-Tosyl-L-Phenylalanine Chloromethyl Ketone) could suppress IL-8 production and secretion in response to S protein in PBMC and THP-1 cells and in HCoV-229E virus-infected PBMC. Activation and translocation of NF-κB was shown to occur rapidly following exposure of PBMC or THP-1 cells to S protein using a highly sensitive assay for active nuclear NF-κB p65 transcription factor. The results further suggested that released or secreted S protein could activate blood monocytes thru recognition by toll-like receptor (TLR)2 ligand.
Cellular vanadium metabolism was studied in Saccharomyces cerevisiae by isolating and characterizing vanadate [V043-, V(V)]-resistant mutants. Vanadate growth inhibition was reversed by the removal of the vanadate from the medium, and vanadate resistance was found to be a recessive trait. Vanadate-resistant mutants isolated from glucose-grown cells were divided into five complementation classes containing more than one mutant. Among the vanadate-resistant mutants isolated in maltose medium, the majority of mutants were found in only two complementation groups. Three of the classes of vanadate-resistant mutants were resistant to 2.5 mM vanadate but sensitive to 5.0 mM vanadate in liquid media. Two classes of vanadate-resistant mutants were resistant to growth in media containing up to 5.0 mM vanadate. Electron spin resonance studies showed that representative strains of the vanadate-resistant complementation classes contained more cellassociated vanadyl [VO2+, V(IV)J than the parental strains.-5Vanadium nuclear magnetic resonance studies showed that one of the vanadate resonances previously associated with cell toxicity (G. R. Willsky, D. A. White, and B. C. McCabe, J. Biol. Chem. 259:13273-132812, 1984) did not accumulate in the resistant strains compared with the sensitive strain. The amount of vanadate remaining in the media after growth was larger for the sensitive strain than for the vanadate-resistant strains. AU of the strains were able to accumulate phosphate, vanadate, and vanadyl.
Vanadium metabolism was studied in a wild type and respiratory-deficient strain of S. cerevisiae. Inhibition of growth by vanadate [V(+5)], vanadate accumulation, and conversion of medium vanadate [V(+5)] to both cell-associated and medium vanadyl [V(+4)] and vanadate [V(+5)] were compared. The growth of both the parental and respiratory-deficient strains was inhibited by vanadate at concentrations greater than or equal to 1 mM. Both parental and respiratory-deficient strains accumulated vanadate and converted medium vanadate to cellular vanadyl as detected using electron spin resonance (ESR). The accumulation of cell-associated vanadyl was correlated with the loss of medium vanadate in both strains using a chemical assay. In contrast, the respiratory-deficient strain showed a greater amount of a cell-associated vanadate compound, as detected with vanadium-51 nuclear magnetic resonance (51V-NMR), than the wild type strain or a representative respiratory-competent vanadate-resistant mutant. These data imply that mitochondrial function may be directly involved in vanadium metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.