There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5–15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.
A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.
SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.
41In December 2019 an outbreak of coronavirus disease emerged in 42 Wuhan, China. The causative agent was subsequently identified and named severe 43 acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which rapidly spread 44 worldwide causing a pandemic. Currently there are no licensed vaccines or 45 therapeutics available against SARS-CoV-2 but numerous candidate vaccines are in 46 development and repurposed drugs are being tested in the clinic. There is a vital need 47 for authentic COVID-19 animal models to further our understanding of pathogenesis 48 and viral spread in addition to pre-clinical evaluation of candidate interventions. 49 50Here we report a dose titration study of SARS-CoV-2 to determine the most suitable 51 infectious dose to use in the ferret model. We show that a high (5x10 6 pfu) and medium 52 (5x10 4 pfu) dose of SARS-CoV-2 induces consistent upper respiratory tract (URT) viral 53 RNA shedding in both groups of six challenged animals, whilst a low dose (5x10 2 pfu) 54 resulted in only one of six displaying signs of URT viral RNA replication. The URT 55 shedding lasted up to 21 days in the high dose animals with intermittent positive signal 56 from day 14. Sequential culls revealed distinct pathological signs of mild multifocal 57 bronchopneumonia in approximately 5-15% of the lung, observed on day 3 in high and 58 medium dosed animals, with presence of mild broncho-interstitial pneumonia on day 59 7 onwards. No obvious elevated temperature or signs of coughing or dyspnoea were 60 observed although animals did present with a consistent post-viral fatigue lasting from 61 day 9-14 in the medium and high dose groups. After virus shedding ceased, re-62 challenged ferrets were shown to be fully protected from acute lung pathology. The 63Page 4 of 39 endpoints of URT viral RNA replication in addition to distinct lung pathology and post 64 viral fatigue were observed most consistently in the high dose group. This ferret model 65 of SARS-CoV-2 infection presents a mild clinical disease (as displayed by 80% of 66 patients infected with SARS-CoV-2). In addition, intermittent viral shedding on days 67 14-21 parallel observations reported in a minority of clinical cases. 68 69 70 71 Word count: 327 72 Introduction 73 74 Coronaviruses are positive sense, single stranded RNA viruses belonging to the family 75 Coronaviridae 1 . These viruses can infect a range of animals, including humans and 76 usually cause a mild respiratory infection, much like the common cold. Two highly 77 pathogenic coronaviruses have emerged in the human population in the last 20 years; 78 severe acute respiratory syndrome (SARS) CoV and middle eastern respiratory 79 syndrome (MERS) CoV. SARS-CoV infected approximately 8,000 people worldwide with 80 a case fatality rate (CFR) of 10%, while MERS-CoV has infected approximately 2,500 81 people with a CFR of 36% 2 .82 83 In December 2019 several pneumonia cases of unknown cause emerged in Wuhan, 84 Hubei, China. Deep sequencing analysis from lower respiratory tract samples from ...
Purpose Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States, with high rates of recurrence and eventual resistance to cytotoxic chemotherapy. Model systems that allow for accurate and reproducible target discovery and validation are needed to support further drug development in this disease. Experimental Design Clinically-annotated patient-derived xenograft (PDX) models were generated from tumor cells isolated from the ascites or pleural fluid of patients undergoing clinical procedures. Models were characterized by immunohistochemistry and by molecular analyses. Each PDX was luciferized to allow for reproducible in vivo assessment of intraperitoneal tumor burden by bioluminescent imaging (BLI). Plasma assays for CA125 and human LINE-1 were developed as secondary tests of in vivo disease burden. Results 14 clinically annotated and molecularly characterized luciferized ovarian PDX models were generated. Luciferized PDX models retain fidelity to both the non-luciferized PDX and the original patient tumor, as demonstrated by immunohistochemistry, array CGH, and targeted and whole-exome sequencing analyses. Models demonstrated diversity in specific genetic alterations and activation of PI3K signaling pathway members. Response of luciferized PDX models to standard of care therapy could be reproducibly monitored by BLI or plasma markers. Conclusions We describe the establishment of a collection of 14 clinically annotated and molecularly characterized luciferized ovarian PDX models in which orthotopic tumor burden in the intraperitoneal space can be followed by standard and reproducible methods. This collection is well-suited as a platform for proof-of-concept efficacy and biomarker studies and for validation of novel therapeutic strategies in ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.