In this paper, a new generalized distribution called the log-logistic Weibull (LLoGW) distribution is developed and presented. This distribution contain the log-logistic Rayleigh (LLoGR), log-logistic exponential (LLoGE) and log-logistic (LLoG) distributions as special cases. The structural properties of the distribution including the hazard function, reverse hazard function, quantile function, probability weighted moments, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, distribution of order statistics, Lmoments and Rényi entropy are derived. Method of maximum likelihood is used to estimate the parameters of this new distribution. A simulation study to examine the bias, mean square error of the maximum likelihood estimators and width of the confidence intervals for each parameter is presented. Finally, real data examples are presented to illustrate the usefulness and applicability of the model.
Marshall and Olkin (1997) introduced a general method for obtaining more flexible distributions by adding a new parameter to an existing one, called the Marshall-Olkin family of distributions. We introduce a new class of distributions called the Marshall-Olkin Log-Logistic Extended Weibull (MOLLEW) family of distributions. Its mathematical and statistical properties including the quantile function hazard rate functions, moments, conditional moments, moment generating function are presented. Mean deviations, Lorenz and Bonferroni curves, Rényi entropy and the distribution of the order statistics are given. The Maximum likelihood estimation technique is used to estimate the model parameters and a special distribution called the Marshall-Olkin Log Logistic Weibull (MOLLW) distribution is studied, and its mathematical and statistical properties explored. Applications and usefulness of the proposed distribution is illustrated by real datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.