The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB 1 cannabinoid receptors on neurons and CB 2 cannabinoid Correspondence should be addressed to N.S. (nstella@uw.edu). 11 These authors contributed equally to this work.Note: Supplementary information is available on the Nature Neuroscience website. Competing Financial Interests:The authors declare no competing financial interests.Reprints and permissions information is available online at http://www.nature.com/reprintsandpermissions/. NIH Public Access Author ManuscriptNat Neurosci. Author manuscript; available in PMC 2011 February 1. Published in final edited form as:Nat Neurosci. 2010 August ; 13(8): 951-957. doi:10.1038/nn.2601. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase α-β-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB 2 -mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activitydependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB 1 -dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.In the nervous system, the endocannabinoids (eCBs) arachidonoylethanolamide (anandamide) and 2-AG are produced and inactivated by neurons and glia 1,2 . The production of eCBs increases in response to specific stimuli, including membrane receptor activation, ion channel opening and calcium influx 2 . eCBs are inactivated by cellular uptake followed by intracellular enzymatic hydrolysis 3,4 . The balance between this production and inactivation dictates the levels of extracellular eCB accumulation and the ensuing activation of CB 1 receptors expressed by neurons (regulating neurotransmitter release) and CB 2 receptors expressed by microglia (regulating their motility and ability to produce immunomodulators) [4][5][6][7] . Thus, the enzymatic steps that control the production and inactivation of eCBs constitute promising molecular targets for indirectly modulating CB 1 and CB 2 receptor activity, and thereby controlling neurotransmission and neuroinflammation.Of all the steps that control the accumulation of eCBs, the hydrolytic enzymes that inactivate anandamide and 2-AG represent the most promising pharmacological and genetic targets for fine-tuning the local accumulation of these lipid transmitters. Inhibition of fatty acid amide hydrolase (FAAH) increases...
The serine hydrolase α/β-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence, and severity. This effect is retained in cnr1−/− or cnr2−/− mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of Juvenile Huntington’s disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.
Cannabinoid receptor 1 (CB1 receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB1 expression in the basal ganglia of patients with Huntington’s disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB1 signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB1 downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB1 expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB1 is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB1 downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, HdhQ150/Q150 mice and the caudate nucleus of patients with HD. In R6/2 mice, CB1 downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB1 signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.
Glioblastoma multiforme (GBM) is a devastating and intractable type of cancer. Current antineoplastic drugs do not improve the median survival of patients diagnosed with GBM beyond 14–15 months in part because the blood-brain barrier is generally impermeable to many therapeutic agents. Drugs that target microtubules (MT) have shown remarkable efficacy in a variety of cancers, yet their use as GBM treatments has also been hindered by the scarcity of brain-penetrant MT-targeting compounds. We have discovered a new alkylindole compound, ST-11, that acts directly on MTs and rapidly attenuates their rate of assembly. Accordingly, ST-11 arrests GBM cells in prometaphase and triggers apoptosis. In vivo analyses reveal that unlike current antitubulin agents, ST-11 readily crosses the blood-brain barrier. Further investigation in a syngeneic orthotopic mouse model of GBM shows that ST-11 activates caspase-3 in tumors to reduce tumor volume without overt toxicity. Thus, ST-11 represents the first member of a new class of brain-penetrant antitubulin therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.