The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB 1 cannabinoid receptors on neurons and CB 2 cannabinoid Correspondence should be addressed to N.S. (nstella@uw.edu). 11 These authors contributed equally to this work.Note: Supplementary information is available on the Nature Neuroscience website. Competing Financial Interests:The authors declare no competing financial interests.Reprints and permissions information is available online at http://www.nature.com/reprintsandpermissions/. NIH Public Access Author ManuscriptNat Neurosci. Author manuscript; available in PMC 2011 February 1. Published in final edited form as:Nat Neurosci. 2010 August ; 13(8): 951-957. doi:10.1038/nn.2601. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase α-β-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB 2 -mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activitydependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB 1 -dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.In the nervous system, the endocannabinoids (eCBs) arachidonoylethanolamide (anandamide) and 2-AG are produced and inactivated by neurons and glia 1,2 . The production of eCBs increases in response to specific stimuli, including membrane receptor activation, ion channel opening and calcium influx 2 . eCBs are inactivated by cellular uptake followed by intracellular enzymatic hydrolysis 3,4 . The balance between this production and inactivation dictates the levels of extracellular eCB accumulation and the ensuing activation of CB 1 receptors expressed by neurons (regulating neurotransmitter release) and CB 2 receptors expressed by microglia (regulating their motility and ability to produce immunomodulators) [4][5][6][7] . Thus, the enzymatic steps that control the production and inactivation of eCBs constitute promising molecular targets for indirectly modulating CB 1 and CB 2 receptor activity, and thereby controlling neurotransmission and neuroinflammation.Of all the steps that control the accumulation of eCBs, the hydrolytic enzymes that inactivate anandamide and 2-AG represent the most promising pharmacological and genetic targets for fine-tuning the local accumulation of these lipid transmitters. Inhibition of fatty acid amide hydrolase (FAAH) increases...
The serine hydrolase α/β-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence, and severity. This effect is retained in cnr1−/− or cnr2−/− mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of Juvenile Huntington’s disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.
BackgroundCannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB1 and CB2 receptors mediate this therapeutic effect is unclear.Principal FindingsWe generated astrocytoma subclones that express set levels of CB1 and CB2, and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB1, CB2 and AKT, but still through a mechanism involving ERK1/2.SignificanceThe high expression level of CB1 and CB2 receptors commonly found in malignant astrocytomas precludes the use of cannabinoids as therapeutics, unless AKT is concomitantly inhibited, or cannabinoids are applied at concentrations that bypass CB1 and CB2 receptors, yet still activate ERK1/2.
Agonists at cannabinoid receptors, such as the phytocannabinoid ⌬ 9 -tetrahydrocannabinol, exert a remarkable array of therapeutic effects but are also associated with undesirable psychoactive side effects. Conversely, targeting enzymes that hydrolyze endocannabinoids (eCBs) allows for more precise fine-tuning of cannabinoid receptor signaling, thus providing therapeutic relief with reduced side effects. Here, we report the development and characterization of an inhibitor of eCB hydrolysis, UCM710, which augments both N-arachidonoylethanolamine and 2-arachidonoylglycerol levels in neurons. This compound displays a unique pharmacological profile in that it inhibits fatty acid amide hydrolase and ␣/-hydrolase domain 6 but not monoacylglycerol lipase. Thus, UCM710 represents a novel tool to delineate the therapeutic potential of compounds that manipulate a subset of enzymes that control eCB signaling. N-Arachidonoylethanolamine (AEA)2 and 2-arachidonoylglycerol (2-AG) are lipid transmitters that act as endogenous ligands for the cannabinoid receptors CB 1 and CB 2 . In the central nervous system, these endocannabinoids (eCBs) are produced by neurons and glial cells in response to specific stimuli and are rapidly inactivated by cellular uptake and enzymatic hydrolysis (1). The eCB signaling system regulates a wide array of physiological processes, including cell differentiation and viability, neurotransmission, and immune cell activation and migration. As such, the enzymes and receptors belonging to the eCB signaling system represent attractive therapeutic targets.Unlike classical neurotransmitter systems in which signaling diversity is principally accomplished via multiple receptor subtypes for a single endogenous ligand, the eCB signaling system utilizes multiple endogenous ligands, two of which, AEA and 2-AG, have been studied in detail (2-4). Enzymes that produce and inactivate these eCBs are tightly and, for the most part, independently regulated (5). Thus, targeting these enzymes allows for the discrete manipulation of eCB signaling, laying the groundwork for focused therapeutic approaches. However, the respective roles of AEA and 2-AG in modulating neuronal and glial cell functions are still being delineated.With regard to eCB inactivation, AEA is hydrolyzed mainly by FAAH, and accordingly, selective FAAH inhibition increases AEA levels in neurons without affecting 2-AG levels (6). In vivo FAAH inhibition recapitulates a narrow subset of the behavioral effects produced by CB 1 agonists (7). 2-AG is hydrolyzed by at least two enzymes: monoacylglycerol lipase (MAGL) (8) and ␣/-hydrolase domain 6 (ABHD6) (9). Selective MAGL inhibition increases 2-AG levels in neurons without affecting AEA levels (8, 10). In vivo MAGL inhibition recapitulates most of the behavioral effects induced by CB 1 agonists (a phenotype that is largely independent of that of FAAH inhibition), suggesting a functional segregation between AEA and 2-AG signaling pathways in vivo (11). Concomitant inhibition of FAAH, MAGL, and ABHD6 in vivo i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.