Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Rates of change in tree communities following major disturbances are determined by a complex set of interactions between local site factors, landscape history and structure, regional species pools and species life histories. Our analysis focuses on vegetation change following abandonment of agricultural fields or pastures, as this is the most extensive form of major disturbance in Neotropical forests. We consider five tree community attributes: stem density, basal area, species density, species richness and species composition. We describe two case studies, in northeastern Costa Rica and Chiapas, Mexico, where both chronosequence and annual tree dynamics studies are being applied. These case studies show that the rates of change in tree communities often deviate from chronosequence trends. With respect to tree species composition, sites of different ages differ more than a single site followed over time through the same age range. Dynamic changes in basal area within stands, on the other hand, generally followed chronosequence trends. Basal area accumulation was more linked with tree growth rates than with net changes in tree density due to recruitment and mortality. Stem turnover rates were poor predictors of species turnover rates, particularly at longer time-intervals. Effects of the surrounding landscape on tree community dynamics within individual plots are poorly understood, but are likely to be important determinants of species accumulation rates and relative abundance patterns.
Models reveal the high carbon mitigation potential of tropical forest regeneration.
Secondary forests are a vital part of the tropical landscape, and their worldwide extent and importance continues to increase. Here, we present the largest chronosequence data set on forest succession in the wet tropics that includes both secondary and old-growth sites. We performed 0.1 ha vegetation inventories in 30 sites in northeastern Costa Rica, including seven old-growth forests and 23 secondary forests on former pastures, ranging from 10 to 42 yr. The secondary forest sites were formerly pasture for intervals of o 1-25 yr. Aboveground biomass in secondary forests recovered rapidly, with sites already exhibiting values comparable to old growth after 21-30 yr, and biomass accumulation was not impacted by the length of time that a site was in pasture. Species richness reached old-growth levels in as little as 30 yr, although sites that were in pasture for 4 10 yr had significantly lower species richness. Forest cover near the sites at the time of forest establishment did not significantly impact biomass or species richness, and the species composition of older secondary forest sites (4 30 yr) converged with that of old growth. These results emphasize the resilience of tropical ecosystems in this region and the high conservation value of secondary forests.Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp.
Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.