Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
The human brain is specialized for face processing, yet we sometimes perceive illusory faces in objects. It is unknown whether these natural errors of face detection originate from a rapid process based on visual features or from a slower, cognitive re-interpretation. Here we use a multifaceted approach to understand both the spatial distribution and temporal dynamics of illusory face representation in the brain by combining functional magnetic resonance imaging and magnetoencephalography neuroimaging data with model-based analysis. We find that the representation of illusory faces is confined to occipital-temporal face-selective visual cortex. The temporal dynamics reveal a striking evolution in how illusory faces are represented relative to human faces and matched objects. Illusory faces are initially represented more similarly to real faces than matched objects are, but within ~250 ms, the representation transforms, and they become equivalent to ordinary objects. This is consistent with the initial recruitment of a broadly-tuned face detection mechanism which privileges sensitivity over selectivity.
SUMMARY Face perception in humans and non-human primates is rapid and accurate[1–4]. In the human brain, a network of visual processing regions is specialized for faces[5–7]. Although face processing is a priority of the primate visual system, face detection is not infallible. Face pareidolia is the compelling illusion of perceiving facial features on inanimate objects, such as the illusory face on the surface of the moon. Although face pareidolia is commonly experienced by humans, its presence in other species is unknown. Here we provide evidence for face pareidolia in a species known to possess a complex face processing system[8–10]: the rhesus monkey (Macaca mulatta). In a visual preference task[11, 12], monkeys looked longer at photographs of objects that elicited face pareidolia in human observers than at photographs of similar objects that did not elicit illusory faces. Examination of eye movements revealed that monkeys fixated the illusory internal facial features in a pattern consistent with how they view photographs of faces[13]. Although the specialized response to faces observed in humans[1, 3, 5–7, 14] is often argued to be continuous across primates[4, 15], it was previously unclear whether face pareidolia arose from a uniquely human capacity. For example, pareidolia could be a product of the human aptitude for perceptual abstraction, or result from frequent exposure to cartoons and illustrations that anthropomorphize inanimate objects. Instead, our results indicate that the perception of illusory facial features on inanimate objects is driven by a broadly-tuned face detection mechanism that we share with other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.