Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.DOI:
http://dx.doi.org/10.7554/eLife.05958.001
The ability of tendons to glide smoothly during muscle contraction is impaired after injury by fibrous adhesions that form between the damaged tendon surface and surrounding tissues. To understand how adhesions form we incubated excised tendons in fibrin gels (to mimic the homeostatic environment at the injury site) and assessed cell migration. We noticed cells exiting the tendon from only the cut ends. Furthermore, treatment of the tendon with trypsin resulted in cell extravagation from the shaft of the tendons. Electron microscopy and immunolocalisation studies showed that the tendons are covered by a novel cell layer in which a collagen type IV/laminin basement membrane (BM) overlies a keratinised epithelium. PCR and western blot analyses confirmed the expression of laminin β1 in surface cells, only. To evaluate the cell retentive properties of the BM in vivo we examined the tendons of the Col4a1+/Svc mouse that is heterozygous for a G-to-A transition in the Col4a1 gene that produces a G1064D substitution in the α1(IV) chain of collagen IV. The flexor tendons had a discontinuous BM, developed fibrous adhesions with overlying tissues, and were acellular at sites of adhesion formation. In further experiments, tenotomy of wild-type mice resulted in expression of laminin throughout the adhesion. In conclusion, we show the existence of a novel tendon BM-epithelium that is required to prevent adhesion formation. The Col4a1+/Svc mouse is an effective animal model for studying adhesion formation because of the presence of a structurally-defective collagen type IV-containing BM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.