J-domain cochaperones confer functional specificity to their heat shock protein (HSP)70 partner by recruiting it to specific substrate proteins. To gain insight into the functions of plastidic HSP70s, we searched in Chlamydomonas databases for expressed sequence tags that potentially encode chloroplast-targeted J-domain cochaperones. Two such cDNAs were found: the encoded J-domain proteins were named chloroplast DnaJ homolog 1 and 2 (CDJ1 and CDJ2). CDJ2 was shown to interact with a ϳ28-kDa protein that by mass spectrometry was identified as the vesicle-inducing protein in plastids 1 (VIPP1). In fractionation experiments, CDJ2 was detected almost exclusively in the stroma, whereas VIPP1 was found in low-density membranes, thylakoids, and in the stroma. Coimmunoprecipitation and mass spectrometry analyses identified stromal HSP70B as the major protein interacting with soluble VIPP1, and, as confirmed by cross-linking data, as chaperone partner of CDJ2. In blue native-PAGE of soluble cell extracts, CDJ2 and VIPP1 comigrated in complexes of Ͼ Ͼ669, ϳ150, and perhaps ϳ300 kDa. Our data suggest that CDJ2, presumably via coiled-coil interactions, binds to VIPP1 and presents it to HSP70B in the ATP state. Our findings and the previously reported requirement of VIPP1 for the biogenesis of thylakoid membranes point to a role for the HSP70B/CDJ2 chaperone pair in this process. INTRODUCTIONChaperones of the heat shock protein (Hsp)70 family belong to the most conserved proteins known. Except for some Archaea, Hsp70s are found in all known organisms and are present in every compartment of the eukaryotic cell (Bukau and Horwich, 1998). Principally, Hsp70s consist of an Nterminal ATPase domain and a C-terminal substrate-binding domain. ATP hydrolysis at the ATPase domain regulates substrate binding and release. Substrate proteins recognized by Hsp70 expose hydrophobic regions, a characteristic feature not only of nonnative proteins, but also of native Hsp70 substrates. Binding of Hsp70 to hydrophobic regions prevents the formation of aggregates. In addition, the intrinsic secondary amide peptide bond cis-trans isomerase activity recently detected for DnaK (the Hsp70 of Escherichia coli) may introduce conformational changes to bound substrates that eventually allow nonnative proteins to reconvert to the native state (Schiene-Fischer et al., 2002). Thus, Hsp70s play a major role in the folding of nascent chains and in the renaturation of nonnative proteins that have accumulated during stress situations such as heat shock (Frydman, 2001). However, they also are involved in many highly specialized functions such as the regulation of the general stress response (Tomoyasu et al., 1998), the uncoating of clathrincoated vesicles (Ungewickell et al., 1995), or the translocation of proteins across membranes (Kang et al., 1990).Specificity of Hsp70 function is mediated largely by its cochaperones, of which the J-domain cochaperones represent an important class. J-domain cochaperones contain a highly conserved J-domain that is responsibl...
The unicellular flagellated green alga Chlamydomonas reinhardtii has emerged as a model organism for the study of a variety of cellular processes. Posttranslational control via protein phosphorylation plays a key role in signal transduction, regulation of gene expression, and control of metabolism. Thus, analysis of the phosphoproteome of C. reinhardtii can significantly enhance our understanding of various regulatory pathways. In this study, we have grown C. reinhardtii cultures in the presence of an inhibitor of Ser/Thr phosphatases to increase the phosphoprotein pool. Phosphopeptides from these cells were enriched by immobilized metal-ion affinity chromatography and analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry (MS) with MS-MS as well as neutral-loss-triggered MS-MS-MS spectra. In this way, we were able to identify 360 phosphopeptides from 328 different phosphoproteins of C. reinhardtii, thus providing new insights into a variety of cellular processes, including metabolic and signaling pathways. Comparative analysis of the phosphoproteome also yielded new functional information on proteins controlled by redox regulation (thioredoxin target proteins) and proteins of the chloroplast 70S ribosome, the centriole, and especially the flagella, for which 32 phosphoproteins were identified. The high yield of phosphoproteins of the latter correlates well with the presence of several flagellar kinases and indicates that phosphorylation/dephosphorylation represents one of the key regulatory mechanisms of eukaryotic cilia. Our data also provide new insights into certain cilium-related mammalian diseases.
The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.
BackgroundRegulatory adjustments to acute and chronic temperature changes are highly important for aquatic ectotherms because temperature affects their metabolic rate as well as the already low oxygen concentration in water, which can upset their energy balance. This also applies to severe changes in food supply. Thus, we studied on a molecular level (transcriptomics and/or proteomics) the immediate responses to heat stress and starvation and the acclimation to different temperatures in two clonal isolates of the model microcrustacean Daphnia pulex from more or less stressful environments, which showed a higher (clone M) or lower (clone G) tolerance to heat and starvation.ResultsThe transcriptomic responses of clone G to acute heat stress (from 20 °C to 30 °C) and temperature acclimation (10 °C, 20 °C, and 24 °C) and the proteomic responses of both clones to acute heat, starvation, and heat-and-starvation stress comprised environment-specific and clone-specific elements. Acute stress (in particular heat stress) led to an early upregulation of stress genes and proteins (e.g., molecular chaperones) and a downregulation of metabolic genes and proteins (e.g., hydrolases). The transcriptomic responses to temperature acclimation differed clearly. They also varied depending on the temperature level. Acclimation to higher temperatures comprised an upregulation of metabolic genes and, in case of 24 °C acclimation, a downregulation of genes for translational processes and collagens. The proteomic responses of the clones M and G differed at any type of stress. Clone M showed markedly stronger and less stress-specific proteomic responses than clone G, which included the consistent expression of a specific heat shock protein (HSP60) and vitellogenin (VTG-SOD).ConclusionsThe expression changes under acute stress can be interpreted as a switch from standard products of gene expression to stress-specific products. The expression changes under temperature acclimation probably served for an increase in energy intake (via digestion) and, if necessary, a decrease in energy expenditures (e.g, for translational processes). The stronger and less stress-specific proteomic responses of clone M indicate a lower degree of cell damage and an active preservation of the energy balance, which allowed adequate proteomic responses under stress, including the initiation of resting egg production (VTG-SOD expression) as an emergency reaction.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4742-6) contains supplementary material, which is available to authorized users.
P-proteins are structural phloem proteins discussed to be involved in the rapid sealing of injured sieve elements. P-proteins are found in all dicotyledonous and some monocotyledonous plants, but additional crystalloid P-proteins, known as forisomes, have evolved solely in the Fabaceae. Both types are encoded by members of the sieve element occlusion (SEO) gene family, which comprises seven phylogenetic subgroups. The Fabaceae-specific subgroup 1 contains genes encoding forisome subunits in e.g. Medicago truncatula, Vicia faba, Dipteryx panamensis and Canavalia gladiata whereas basal subgroup 5 encodes P-proteins in Nicotiana tabacum (tobacco) and Arabidopsis thaliana. The function of remaining subgroups is still unknown. We chose Glycine max (soybean) as a model to investigate SEO proteins representing different subgroups in one species. We isolated native P-proteins to determine the SEO protein composition and analyzed the expression pattern, localization and structure of the G. max SEO proteins representing five of the subgroups. We found that subgroup 1 GmSEO genes encode forisome subunits, a member of subgroup 5 encodes a non-forisome P-protein and subgroup 2 GmSEO genes encode the components of forisome tails, which are present in a restricted selection of Fabaceaen species. We therefore present the first molecular characterization of a Fabaceae non-forisome P-protein and the first evidence that forisome tails are encoded by a phylogenetically-distinct branch of the SEO gene family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.