ObjectiveTo determine the prevalence of hypermetabolism, relative to body composition, in amyotrophic lateral sclerosis (ALS) and its relationship with clinical features of disease and survival.MethodsFifty-eight patients with clinically definite or probable ALS as defined by El Escorial criteria, and 58 age and sex-matched control participants underwent assessment of energy expenditure. Our primary outcome was the prevalence of hypermetabolism in cases and controls. Longitudinal changes in clinical parameters between hypermetabolic and normometabolic patients with ALS were determined for up to 12 months following metabolic assessment. Survival was monitored over a 30-month period following metabolic assessment.ResultsHypermetabolism was more prevalent in patients with ALS than controls (41% vs 12%, adjusted OR=5.4; p<0.01). Change in body weight, body mass index and fat mass (%) was similar between normometabolic and hypermetabolic patients with ALS. Mean lower motor neuron score (SD) was greater in hypermetabolic patients when compared with normometabolic patients (4 (0.3) vs 3 (0.7); p=0.04). In the 12 months following metabolic assessment, there was a greater change in Revised ALS Functional Rating Scale score in hypermetabolic patients when compared with normometabolic patients (−0.68 points/month vs −0.39 points/month; p=0.01). Hypermetabolism was inversely associated with survival. Overall, hypermetabolism increased the risk of death during follow-up to 220% (HR 3.2, 95% CI 1.1 to 9.4, p=0.03).Conclusions and relevanceHypermetabolic patients with ALS have a greater level of lower motor neuron involvement, faster rate of functional decline and shorter survival. The metabolic index could be important for informing prognosis in ALS.
In amyotrophic lateral sclerosis (ALS), onset and spread of upper motor neuron (UMN) and lower motor neuron (LMN) dysfunction is typically asymmetric. Our aim was to investigate the relationship between limb dominance and the onset and spread of clinical UMN and LMN dysfunction in ALS. We studied 138 ALS subjects with unilateral and concordant limb dominance, from two tertiary centres. A questionnaire was used to determine the pattern of disease onset and spread. The clinical severity of UMN and LMN signs in each limb was quantified using a validated scoring system. Results showed that onset of weakness was more likely to occur in the dominant upper limb (p = 0.02). In subjects with initial weakness in a non-dominant limb, spread of weakness was more likely to be to the other limb on that side (p = 0.008). The relative distribution of upper limb UMN signs was affected by whether weakness first occurred on the dominant or non-dominant side (p = 0.03). These findings support limb dominance as a significant factor underlying onset and spread of ALS, with UMN processes playing an important role. The effect of limb dominance on the presentation of ALS may reflect underlying neuronal vulnerabilities, which become exposed by the disease.
Immunity has emerged as a key player in neurodegenerative diseases such as amyotrophic lateral sclerosis, with recent studies documenting aberrant immune changes in patients and animal models. A challenging aspect of amyotrophic lateral sclerosis research is the heterogeneous nature of the disease. In this study, we investigate the associations between peripheral blood myeloid cell populations and clinical features characteristic of amyotrophic lateral sclerosis. Peripheral blood leukocytes from 23 healthy controls and 48 patients with amyotrophic lateral sclerosis were analysed to measure myeloid cell alterations. The proportion of monocytes (classical, intermediates and non-classical subpopulations) and neutrophils, as well as the expression of select surface markers, were quantitated using flow cytometry. Given the heterogeneous nature of amyotrophic lateral sclerosis, multivariable linear analyses were performed to investigate associations between patients’ myeloid profile and clinical features, such as the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, bulbar subscore of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale over disease duration and respiratory function. We demonstrate a shift in monocyte subpopulations in patients with amyotrophic lateral sclerosis, with the ratio of classical to non-classical monocytes increased compared with healthy controls. In line with this, patients with greater disease severity, as determined by a lower Revised Amyotrophic Lateral Sclerosis Functional Rating Scale score, had reduced non-classical monocytes. Interestingly, patients with greater bulbar involvement had a reduction in the proportions of classical, intermediate and non-classical monocyte populations. We also revealed several notable associations between myeloid marker expression and clinical features in amyotrophic lateral sclerosis. CD16 expression on neutrophils was increased in patients with greater disease severity and a faster rate of disease progression, whereas HLA-DR expression on all monocyte populations was elevated in patients with greater respiratory impairment. This study demonstrates that patients with amyotrophic lateral sclerosis with distinct clinical features have differential myeloid cell signatures. Identified cell populations and markers may be candidates for targeted mechanistic studies and immunomodulation therapies in amyotrophic lateral sclerosis.
BackgroundGene discovery has provided remarkable biological insights into amyotrophic lateral sclerosis (ALS). One challenge for clinical application of genetic testing is critical evaluation of the significance of reported variants.MethodsWe use whole exome sequencing (WES) to develop a clinically relevant approach to identify a subset of ALS patients harboring likely pathogenic mutations. In parallel, we assess if DNA methylation can be used to screen for pathogenicity of novel variants since a methylation signature has been shown to associate with the pathogenic C9orf72 expansion, but has not been explored for other ALS mutations. Australian patients identified with ALS‐relevant variants were cross‐checked with population databases and case reports to critically assess whether they were “likely causal,” “uncertain significance,” or “unlikely causal.”ResultsPublished ALS variants were identified in >10% of patients; however, in only 3% of patients (4/120) could these be confidently considered pathogenic (in SOD1 and TARDBP). We found no evidence for a differential DNA methylation signature in these mutation carriers.ConclusionsThe use of WES in a typical ALS clinic demonstrates a critical approach to variant assessment with the capability to combine cohorts to enhance the largely unknown genetic basis of ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.