Plant leaves host a specific set of microbial epiphytes. Plant genetic and solar UV-B radiation effects on the diversity of the phyllosphere were examined by measuring epiphytic bacterial ribosomal DNA diversity in a maize recombinant inbred (RI) mapping population. Several chromosomal quantitative trait loci (QTL) with significant effects on bacterial diversity were identified, some of which had effects only in the presence of UV-B radiation and others that had effects both with and without UV-B. Candidate genes with allele-specific effects were mapped to the bacterial diversity chromosomal regions. A glutamate decarboxylase candidate gene was located at a UV-B-specific chromosomal locus, and in a comparison between two RI lines with contrasting bacterial diversity phenotypes, high bacterial diversity was associated with high levels of glutamate decarboxylase enzyme activity, a component of the gamma-aminobutyric acid (GABA) pathway. The bacterial diversity loci exhibited a significant overlap with loci connected with Southern leaf blight (SLB) susceptibility in the field. A SLB-resistant inbred genotype had less beta bacterial diversity, and antibiotic treatment of inbreds increased this diversity. These results suggest that the GABA pathway is genetically associated with phyllosphere bacterial diversity. Furthermore, the colocalization of QTL between low bacterial diversity and fungal blight-resistance and the increase in beta diversity in antibiotic-treated leaves suggest that occupation of leaf habitats by a particular set of suppressive bacteria may restrict phyllosphere bacterial variability and increase resistance to fungal infection.
DNA was extracted from samples taken from close to acidic hydrothermal vents on shore of the Aeolian Island of Vulcano (Italy). RNA gene sequences were amplified by PCR, cloned, and sequenced. A sequence with an origin in samples at 35 degrees and 45 degrees C corresponded to that of a novel Acidithiobacillus species that was isolated from water close to the vents. Novel, iron-oxidizing mesophilic acidophiles were isolated through enrichment cultures with ferrous iron but were not represented in the clone banks of environmental rDNA. These acidophiles were related to Thiobacillus prosperus, which was isolated previously from Vulcano. The archaeal sequences that comprised a clone bank representing a high-temperature sample (75 degrees C) corresponded to those of Acidianus brierleyi and of thermophiles previously isolated from Vulcano, Thermoplasma volcanium and Acidianus infernus.
The halotolerant acidophile ‘Thiobacillus prosperus’ was shown to require chloride for growth. With ferrous iron as substrate, growth occurred at a rate similar to that of the well-studied acidophile Acidithiobacillus ferrooxidans. Previously, the salt (NaCl) requirement of ‘T. prosperus’ was not clear and its growth on ferrous iron was described as poor. A subtractive hybridization of cDNAs from ferrous-iron-grown and sulfur-grown ‘T. prosperus’ strain V6 led to identification of a cluster of genes similar to the rus operon reported to encode ferrous iron oxidation in A. ferrooxidans. However, the ‘T. prosperus’ gene cluster did not contain a homologue of cyc1, which is thought to encode a key cytochrome c in the pathway of electron transport from ferrous iron in A. ferrooxidans. Rusticyanin, another key protein in ferrous iron oxidation by A. ferrooxidans, was present in ‘T. prosperus’ at similar concentrations in cells grown on either ferrous iron or sulfur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.