The granulin/epithelin protein motif has an unusual structure consisting of a parallel stack of beta-hairpins stapled together by six disulphide bonds. The new structure also contains a folding subdomain shared by small toxins, protease inhibitors as well as the EGF-like protein modules.
Although protein carbonyl formation is an index of oxidative stress in skeletal muscles, the exact proteins, which undergo oxidation in these muscles, remain unknown. We used 2D electrophoresis, immunoblotting, and mass spectrometry to identify carbonylated proteins in the diaphragm in septic animals. Rats were injected with saline (control) or Escherichia coli lipopolysaccharides (LPS) and killed after various intervals. Diaphragm protein carbonylation increased significantly and peaked 12 h after LPS injection, and it was localized both inside muscle fibers and in blood vessels supplying muscle fibers. Aldolase A, glyceraldehyde 3-phosphate dehydrogenase, enolase 3beta, mitochondrial and cytosolic creatine kinases, alpha-actin, carbonic anyhdrase III, and ubiquinol-cytochrome c reductase were all carbonylated in septic rat diaphragms. In addition, we found significant negative correlations between the intensity of carbonylation and creatine kinase and aldolase activities. We conclude that glycolysis, ATP production, CO2 hydration, and contractile proteins are targeted by oxygen radicals inside the diaphragm during sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.