The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is involved in immune function and cell growth. We evaluated the association between genetic variation in JAK1 (10 SNPs), JAK2 (9 SNPs), TYK2 (5 SNPs), SOCS1 (2 SNPs), SOCS2 (2 SNPs), STAT1 (16 SNPs), STAT2 (2 SNPs), STAT3 (6 SNPs), STAT4 (21 SNPs), STAT5A (2 SNPs), STAT5B (3 SNPs), STAT6 (4 SNPs) with risk of colorectal cancer. We used data from population-based case-control studies (colon cancer n=1555 cases, 1956 controls; rectal cancer n=754 cases, 959 controls). JAK2, SOCS2, STAT1, STAT3, STAT5A, STAT5B, and STAT6 were associated with colon cancer; STAT3, STAT4, STAT6, and TYK2 were associated with rectal cancer. Given the biological role of the JAK/STAT-signaling pathway and cytokines, we evaluated interaction with IFNG, TNF, and IL6; numerous statistically significant associations after adjustment for multiple comparisons were observed. The following statistically significant interactions were observed: TYK2 with aspirin/NSAID use; STAT1, STAT4, and TYK2 with estrogen status; and JAK2, STAT2, STAT4, STAT5A, STAT5B, and STAT6 with smoking status and colon cancer risk; JAK2, STAT6, and TYK2 with aspirin/NSAID use; JAK1 with estrogen status; STAT2 with cigarette smoking and rectal cancer. JAK2, SOCS1, STAT3, STAT5, and TYK2 were associated with colon cancer survival (HRR of 3.3 95% CI 2.01, 5.42 for high mutational load). JAK2, SOCS1, STAT1, STAT4, and TYK2 were associated with rectal cancer survival (HRR 2.80 95 %CI 1.63, 4.80). These data support the importance of the JAK/STAT-signaling pathway in colorectal cancer and suggest targets for intervention.
Published studies have identified genetic variants, somatic mutations, and changes in gene expression profiles that are associated with hepatocellular carcinoma (HCC), particularly involving genes that encode drug metabolizing enzymes (DMEs). CYP2C9, one of the most abundant and important DMEs, is involved in the metabolism of many carcinogens and drugs and is down-regulated in HCC. To investigate the molecular mechanisms that control CYP2C9 expression, we applied integrative approaches including in silico, in vitro, and in vivo analyses to elucidate the role of microRNA hsa-miR-128-3p in the regulation of CYP2C9 expression and translation. RNA electrophoresis mobility shift assays demonstrated a direct interaction between hsa-miR-128-3p and its cognate target, the CYP2C9 transcript. Furthermore, the expression of a luciferase reporter gene containing the 3′-UTR of CYP2C9 and the endogenous expression of CYP2C9 were suppressed by transfection of hsa-miR-128-3p. Importantly, chemically-induced up- or down-regulation of hsa-miR-128-3p correlated inversely with the expression of CYP2C9. Finally, an association analysis revealed that the expression of hsa-miR-128-3p is inversely correlated with the expression of CYP2C9 in HCC tumor tissues. Altogether, the study helped to elucidate the mechanism of CYP2C9 regulation by hsa-miR-128-3p, and the inverse association in HCC.
Recent studies have linked expression of lectin-like ox-LDL receptor 1 (OLR1) to tumorigenesis. We analyzed microarray data from Olr1 knockout (KO) and wild type (WT) mice for genes involved in cellular transformation and evaluated effects of OLR1 over-expression in normal mammary epithelial cells (MCF10A) and breast cancer cells (HCC1143) in terms of gene expression, migration, adhesion and transendothelial migration. Twenty-six out of 238 genes were inhibited in tissues of OLR1 KO mice; the vast majority of OLR1 sensitive genes contained NF-κB binding sites in their promoters. Further studies revealed broad inhibition of NF-kB target genes outside of the transformation-associated gene pool, with enrichment themes of defense response, immune response, apoptosis, proliferation, and wound healing. Transcriptome of Olr1 KO mice also revealed inhibition of de novo lipogenesis, rate-limiting enzymes fatty acid synthase (Fasn), stearoyl-CoA desaturase (Scd1) and ELOVL family member 6 (Elovl6), as well as lipolytic phospholipase A2 group IVB (Pla2g4b). In studies comparing MCF10A and HCC1143, the latter displayed 60% higher OLR1 expression. Forced over-expression of OLR1 resulted in upregulation of NF-κB (p65) and its target pro-oncogenes involved in inhibition of apoptosis (BCL2, BCL2A1, TNFAIP3) and regulation of cell cycle (CCND2) in both cell lines. Basal expression of FASN, SCD1 and PLA2G4B, as well as lipogenesis transcription factors PPARA, SREBF2 and CREM, was higher in HCC1143 cells. Over-expression of OLR1 in HCC1143 cells also enhanced cell migration, without affecting their adherence to TNFα-activated endothelium or transendothelial migration. On the other hand, OLR1 neutralizing antibody inhibited both adhesion and transmigration of untreated HCC1143 cells. We conclude that OLR1 may act as an oncogene by activation of NF-kB target genes responsible for proliferation, migration and inhibition of apoptosis and de novo lipogenesis genes.
Background Human cytosoloic sulfotransferase (SULT) 2A1 is a major hepatic isoform and sulfates hydroxyl groups in structurally diverse sterols and xenobiotics. SULT2A1 crystal structures resolved in the presence and absence of 3′,5′-diphosphoadenosine (PAP) or dehydropeiandrosterone (DHEA) suggest a significant rearrangement of the peptide that forms the surface of the active site in the presence of PAP. Materials and methods Molecular modeling was used to examine the effects of the rearrangement in SULT2A1 associated with 3′-phosphoadenosine 5′-phosphosulfate (PAPS) binding on the binding of DHEA and raloxifene. The kinetics of DHEA and raloxifene sulfation was analyzed to investigate the effects of the rearrangement on SULT2A1 activity. Results Molecular models indicate that DHEA is able to bind to SULT2A1 in both conformations (open, without PAP; closed, with PAP) in a catalytic configuration, whereas raloxifene bound in a catalytic conformation only in the open structure. Raloxifene did not bind in the smaller, closed substrate binding pocket. Kinetic analysis of DHEA sulfation was consistent with a random Bi-Bi reaction mechanism, whereas raloxifene sulfation was more indicative of an ordered reaction mechanism with raloxifene binding first. Initial burst kinetics with DHEA yielded similar results after preincubation of SULT2A1 with DHEA or PAPS. Preincubation of SULT2A1 with raloxifene showed a burst of raloxifene sulfate formation with the addition of PAPS. In contrast, little raloxifene sulfate was formed if SULT2A1 was preincubated with PAPS and the reaction initiated with raloxifene. Conclusions The structural rearrangements in SULT2A1 caused by PAPS binding can alter the sulfation mechanism and kinetics of different substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.