We have developed an intraoral bipolar surface electrode for the genioglossus muscle. The electrode, made from an athletic mouthguard and dental impression material, was fitted to the lower teeth. Electrode wires, bared at the tip, were positioned on the bottom of the mouthpiece to lie in contact with the superior surface of the genioglossus just behind the teeth. The electromyographic activity of the genioglossus, simultaneously obtained from the surface electrode and conventional intramuscular electrodes, was compared during quiet breathing, CO2 rebreathing, and a variety of tongue movements. The two types of electrodes recorded similar patterns of muscle activity, and spectral analyses of the signals revealed similar and highly coherent frequency spectra. We conclude that the surface electrode satisfactorily reflects the bioelectrical activity of the genioglossus. The mouthpiece electrode has the further advantage that quantitative comparisons can be made among recordings made in different experimental sessions, since the fit of the mouthpiece to the teeth assures a constant relationship of the electrode to the genioglossus muscle.
Our purpose was to examine the influence of steady-state changes in chemical stimuli, as well as discrete peripheral chemoreceptor stimulation, on abdominal expiratory motor activity. In decerebrate, paralyzed, vagotomized, and ventilated cats that had bilateral pneumothoraces, we recorded efferent activity from a phrenic nerve and from an abdominal nerve (cranial iliohypogastric nerve, L1). All cats showed phasic expiratory abdominal nerve discharge at normocapnia [end-tidal PCO2 38 +/- 2 Torr], but small doses (2-6 mg/kg) of pentobarbital sodium markedly depressed this activity. Hyperoxic hypercapnia consistently enhanced abdominal expiratory activity and shortened the burst duration. Isocapnic hypoxia caused inhibition of abdominal nerve discharge in 11 of 13 cats. Carotid sinus nerve denervation (3 cats) exacerbated the hypoxic depression of abdominal nerve activity and depressed phrenic motor output. Stimulation of peripheral chemoreceptors with NaCN increased abdominal nerve discharge in 7 of 10 cats, although 2 cats exhibited marked inhibition. Four cats with intact neuraxis, but anesthetized with ketamine, yielded qualitatively similar results. We conclude that when cats are subjected to steady-state chemical stimuli in isolation (no interference from proprioceptive inputs), hypercapnia potentiates, but hypoxia attenuates, abdominal expiratory nerve activity. Mechanisms to explain the selective inhibition of expiratory motor activity by hypoxia are proposed, and physiological implications are discussed.
SUMMARY1. We investigated the responses of phrenic and hypoglossal nerve activities to the addition of 3, 5 and 10% CO2 to a constant flow of warm, humidified air through the isolated upper airway in decerebrate, paralysed, artificially ventilated cats.2. In bilaterally vagotomized animals, intralaryngeal CO2 caused a dose-related decrease in peak integrated phrenic activity. This response became attenuated with time, but was still discernible after 3 min of continuous intralaryngeal CO2. In the same experiments, intralaryngeal CO2 caused a gradual increase in peak integrated hypoglossal nerve activity.3. Intermittent pulsing of intralaryngeal CO2 during neural inspiration or expiration resulted in similar, but smaller decreases in the phrenic activity of some animals. Hypoglossal activity was not influenced appreciably by this procedure.4. Systemic hypercapnia attenuated the phrenic responses to intralaryngeal CO2.The hypoglossal responses were greatly reduced or abolished. 5. In vagally intact cats, ventilated by a servo-respirator in accordance with phrenic nerve activity, intralaryngeal CO2 resulted in only a trace of reduction in phrenic discharge. After bilateral vagotomy, the same animals showed typical responses, as described above.6. All responses to intralaryngeal CO2 were abolished after bilateral section of the superior laryngeal nerves (SLNs).7. We conclude that intralaryngeal CO2 acts by way of receptors with afferents in the SLNs to decrease phrenic and increase hypoglossal nerve activities. The responses are not importantly gated during neural inspiration or expiration. The responses to intralaryngeal CO2 are most clearly demonstrable after bilateral vagotomy, suggesting that vagal mechanisms serve to stabilize respiratory motor neural activity in intact animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.