Background: Shrimp may cross-react with other crustaceans and mollusks and nonedible arthropods such as insects (cockroach and chironomids), arachnids (house dust mites) and even nematodes. Since the muscle protein tropomyosin has been implicated as a possible cross-reacting allergen, this study characterized the IgE-binding epitopes in shrimp tropomyosin, Pen a 1, that cross-react with other allergenic invertebrate tropomyosins in house dust mites (Der p 10, Der f 10) and cockroaches (Per a 7). Pen a 1-reactive sera from shrimp-allergic subjects were used to evaluate the effect on IgE binding of different amino acid substitutions in Pen a 1 epitopes based on homologous sequences in Per a 7 and Der p 10/Der f 10. Methods: Peptides were synthesized spanning the length of Pen a 1 IgE-binding epitopes and amino acid substitutions were performed based on homologous amino acid sequences from Per a 7 and Der p 10/Der f 10. Results: 7/8 individually recognized Pen a 1 epitopes (2, 3a, 3b, 4, 5a, 5b and 5c) had an identical amino acid sequence with lobster allergen, Hom a 1, 4/8 (3a, 3b, 4 and 5a) with Der p 10 and Der f 10, and 5/8 (2, 3a, 3b, 4 and 5a) with Per a 7. In addition, even homologous regions of other arthropod tropomyosins that differ in one or more amino acids from the sequences of Pen a 1 epitopes are still recognized by shrimp-allergic IgE antibodies. In total, shrimp-allergic sera recognize 6/8 peptides homologous to Pen a 1 epitopes in Per a 7, 7/8 in Der p 10/Der f 10, and 7/8 epitopes in Hom a 1. Conclusions: The IgE recognition by shrimp-allergic individuals of identified and/or similar amino acid sequences homologous to Pen a 1 epitopes in mite, cockroach and lobster tropomyosins are the basis of the in vitro cross-reactivity among invertebrate species. Based on amino acid sequence similarity and epitope reactivity, lobster tropomyosin has the strongest and cockroach the least cross-reactivity with shrimp. The clinical relevance of these cross-reactivities in developing allergic reactions to different arthropods needs to be determined.
The major shrimp allergen, tropomyosin, is an excellent model allergen for studying the influence of mutations within the primary structure on the allergenic potency of an allergen; Pen a 1 allows systematic evaluation and comparison of Ab-binding epitopes, because amino acid sequences of both allergenic and nonallergenic tropomyosins are known. Individually recognized IgE Ab-binding epitopes, amino acid positions, and substitutions critical for IgE Ab binding were identified by combinatorial substitution analysis, and 12 positions deemed critical were mutated in the eight major epitopes. The mutant VR9-1 was characterized with regard to allergenic potency by mediator release assays using sera from shrimp-allergic subjects and sera from BALB/c, C57BL/6J, C3H/HeJ, and CBA/J mice sensitized with shrimp extract using alum, cholera toxin, and Bordetella pertussis, as adjuvants. The secondary structure of VR9-1 was not altered; however, the allergenic potency was reduced by 90–98% measuring allergen-specific mediator release from humanized rat basophilic leukemia (RBL) cells, RBL 30/25. Reduced mediator release of RBL-2H3 cells sensitized with sera from mice that were immunized with shrimp extract indicated that mice produced IgE Abs to Pen a 1 and to the same epitopes as humans did. In conclusion, data obtained by mapping sequential epitopes were used to generate a Pen a 1 mutant with significantly reduced allergenic potency. Epitopes that are relevant for human IgE Ab binding are also major binding sites for murine IgE Abs. These results indicate that the murine model might be used to optimize the Pen a 1 mutant for future therapeutic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.