The way that mothers provision their offspring can have important consequences for their offspring's performance throughout life. Models suggest that maternally induced variation in life histories may have large population dynamical effects, even perhaps driving cycles such as those seen in forest Lepidoptera. The evidence for large maternal influences on population dynamics is unconvincing, principally because of the difficulty of conducting experiments at both the individual and population level. In the soil mite, Sancassania berlesei, we show that there is a trade-off between a female's fecundity and the per-egg provisioning of protein. The mother's position on this trade-off depends on her current food availability and her age. Populations initiated with 250 eggs of different mean sizes showed significant differences in the population dynamics, converging only after three generations. Differences in the growth, maturation and fecundity of the initial cohort caused differences in the competitive environment for the next generation, which, in turn, created differences in their growth and reproduction. Maternal effects in one generation can therefore lead to population dynamical consequences over many generations. Where animals live in environments that are temporally variable, we conjecture that maternal effects could result in long-term dynamical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.