Between 5 and 20% of the adult population in Western countries suffer from insufficient and/or unsatisfying sleep, often associated with certain psychiatric disorders or with certain types of professional activities (for example, shift workers) and travel schedules (for example, jet lag). The benzodiazepines are at present the drug treatment of choice for the management of anxiety and stress-related conditions as well as insomnia. Benzodiazepines are thought to act by potentiating the action of the neurotransmitter gamma-aminobutyric acid (GABA), a widely distributed transmitter in the central nervous system. The circadian system has a key role in the regulation of the sleep-wake cycle, and at least some forms of insomnia may be the result of a disorder of the circadian sleep-wake rhythm. Similarly, at least some forms of depression may also involve disruption of normal circadian rhythmicity. A central pacemaker for the generation of many circadian rhythms in mammals, including the sleep-wake cycle, appears to be located in the suprachiasmatic nucleus, and recent research indicates that both cell bodies and axons containing GABA are present within the bilaterally paired suprachiasmatic nuclei. These findings raise the possibility that the benzodiazepines, commonly prescribed for sleep and mental disorders, may have an effect on the central circadian pacemaker. Here we report that the acute administration of triazolam, a short-acting benzodiazepine commonly prescribed for the treatment of insomnia, induces a phase-shift in the circadian rhythm of locomotor activity in golden hamsters. This suggests a role for GABA-containing neurones in the mammalian circadian system.
Dietary fibers are increasingly appreciated as beneficial nutritional components. However, a requisite role of gut microbiota in fiber function and the overall impact of fibers on metabolomic flux remain unclear. We herein showed enhancing effects of a soluble resistant maltodextrin (RM) on glucose homeostasis in mouse metabolic disease models. Remarkably, fecal microbiota transplantation (FMT) caused pronounced and time-dependent improvement in glucose tolerance in RM recipient mice, indicating a causal relationship between microbial remodeling and metabolic efficacy. Microbial 16S sequencing revealed transmissible taxonomic changes correlated with improved metabolism, notably enrichment of probiotics and reduction of Alistipes and Bacteroides known to associate with high fat/protein diets. Metabolomic profiling further illustrated broad changes, including enrichment of phenylpropionates and decreases in key intermediates of glucose utilization, cholesterol biosynthesis and amino acid fermentation. These studies elucidate beneficial roles of RM-dependent microbial remodeling in metabolic homeostasis, and showcase prevalent health-promoting potentials of dietary fibers.
Aging affects the regulation of diurnal and circadian rhythmicity. We tested the hypothesis that the age-related difference in the phase angle of entrainment of the locomotor activity rhythm to a light-dark (LD) cycle would be greater under LD 6:18 than LD 14:10. We also analyzed changes in quantitative aspects of wheel-running behavior according to age group. Young (9-wk-old), middle-aged (11- to 12-mo-old), and old (15- to 17-mo-old) male golden hamsters were entrained to a 14:10 LD cycle followed by re-entrainment to a 6:18 LD cycle. Fourteen days after the start of locomotor recording in LD 14:10 and again after 27 days in LD 6:18, the phase of activity onset, the total number of wheel revolutions performed per day, the peak intensity of wheel-running activity, the duration of the active period, and the level of fragmentation of locomotor activity were quantitated. We also studied the temporal distribution of the largest bout of wheel-running activity among the age groups in both photoperiods. Short days induced testicular regression at a similar rate among young, middle-aged, and old hamsters. The data are discussed in terms of the effects of age on overall circadian organization in the seasonally changing environment.
To test whether circadian responses to light are modulated by decreased glucose availability, we analyzed photic phase resetting of the circadian rhythm of locomotor activity in mice exposed to four metabolic challenges: 1) blockade of glucose utilization induced by 2-deoxy-d-glucose (2-DG), 2) fasting (food was removed for 30 h), 3) insulin administration, and 4) insulin treatment after fasting. In mice housed in constant darkness, light pulses applied during early subjective night induced phase delays of the rhythm of locomotor activity, whereas light pulses applied during late subjective night caused phase advances. There was an overall reduction of light-induced phase shifts, with a more pronounced effect for delays, in mice pretreated with 500 mg/kg ip 2-DG compared with mice injected with saline. Administration of glucose with 2-DG prevented the reduction of light-induced phase delays. Furthermore, phase delays were reduced in fed mice pretreated with 5 IU/kg sc insulin and in fasted mice injected with saline or insulin compared with control fed mice. These results show that circadian responses to light are reduced when brain glucose availability is decreased, suggesting a metabolic modulation of light-induced phase shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.