The tomato (Lycopersicon esculentum) chloroplast small heat shock protein (sHSP), HSP21, is induced by heat treatment in leaves, but also under normal growth conditions in developing fruits during the transition of chloroplasts to chromoplasts. We used transgenic tomato plants constitutively expressing HSP21 to study the role of the protein under stress conditions and during fruit maturation. Although we did not find any effect for the transgene on photosystem II (PSII) thermotolerance, our results show that the protein protects PSII from temperature-dependent oxidative stress. In addition, we found direct evidence of the protein's role in fruit reddening and the conversion of chloroplasts to chromoplasts. When plants were grown under normal growth temperature, transgenic fruits accumulated carotenoids earlier than controls. Furthermore, when detached mature green fruits were stored for 2 weeks at 28C and then transferred to room temperature, the natural accumulation of carotenoids was blocked. In a previous study, we showed that preheat treatment, which induces HSP21, allowed fruit color change at room temperature, after a cold treatment. Here, we show that mature green transgenic fruits constitutively expressing HSP21 do not require the heat treatment to maintain the ability to accumulate carotenoids after cold storage. This study demonstrates that a sHSP plays a role in plant development under normal growth conditions, in addition to its protective effect under stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.