The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.
Ovarian neoplasms are a heterogeneous group of tumors with varying incidence in the general population. The most common are the surface epithelial tumors which include transitional cell tumors. Transitional cell tumors include both transitional cell carcinoma and Brenner tumor. The vast majority of Brenner tumors are benign, often incidental findings; however, malignant Brenner tumors (MBT) do occasionally occur. MBT present similarly to other ovarian neoplasms with abdominal pain and bulk symptoms. On imaging, these tumors demonstrate nonspecific findings. Microscopically, they demonstrate areas of conventional benign Brenner tumor juxtaposed with regions of frank malignancy showing marked cytologic atypia and infiltration. There is no consistent tumor marker for these tumors, but CA-125, CA 72-4 and SCC have been reported in singular instances. Tumors express several immunohistochemical markers of urothelial differentiation including uroplakin III, thrombomodulin, GATA3, p63, as well as cytokeratin 7. The primary treatment modality is surgical excision. Due to their rarity, the precise role and regimen of adjuvant chemo-radiation therapy for MBT has not been established. We herein review a case of MBT with emphasis on primary treatment and treatment of recurrent disease, including the use of adjuvant pelvic radiation, discuss the current state of the literature and standards of practice regarding this malignancy.
Elevated NaCl concentrations of the cerebrospinal fluid (CSF) increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. Neurons of the rostral ventrolateral medulla (RVLM) play a pivotal role in the regulation of SNA and receive mono- or poly-synaptic inputs from several hypothalamic structures responsive to hypernatremia. Therefore, the present study investigated the contribution of RVLM neurons to the SNA and pressor response to CSF hypernatremia. Lateral ventricle infusion of 0.15M, 0.6M, and 1.0M NaCl (5µL/10 min) produced concentration-dependent increases in lumbar SNA, adrenal SNA, and arterial blood pressure (ABP) despite no change in splanchnic SNA and a decrease in renal SNA. Ganglionic blockade with chlorisondamine or acute lesion of the lamina terminalis blocked or significantly attenuated these responses, respectively. RVLM microinjection of the GABAA agonist muscimol abolished the sympathoexcitatory response to ICV infusion of 1M NaCl. Furthermore, blockade of ionotropic glutamate, but not angiotensin II type 1, receptors significantly attenuated the increase in lumbar SNA, adrenal SNA, and ABP. Finally, single-unit recordings of spinally-projecting RVLM neurons revealed three distinct populations based on discharge responses to ICV infusion of 1M NaCl: Type I excited (46%, 11/24), Type II inhibited (37%, 9/24), and Type III no change (17%, 4/24). All neurons with slow conduction velocities were Type I cells. Collectively, these findings suggest that acute increases in CSF NaCl concentrations selectively activate a discrete population of RVLM neurons through glutamate receptor activation to increase SNA and ABP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.