The cerebellum is often active in imaging studies of verbal working memory, consistent with a putative role in articulatory rehearsal. While patients with cerebellar damage occasionally exhibit a mild impairment on standard neuropsychological tests of working memory, these tests are not diagnostic for exploring these processes in detail. The current study was designed to determine whether damage to the cerebellum is associated with impairments on a range of verbal working memory tasks, and if so, under what circumstances. Moreover, we assessed the hypothesis that these impairments are related to impaired rehearsal mechanisms. Patients with damage to the cerebellum (n = 15) exhibited a selective deficit in verbal working memory: spatial forward and backward spans were normal, but forward and backward verbal spans were lower than controls. While the differences were significant, digit spans were relatively preserved, especially in comparison to the dramatic reductions typically observed in classic 'short-term memory' patients with perisylvian brain damage. The patients tended to be more impaired on a verbal version compared to a spatial version of a working memory task with a long delay and this impairment was correlated with overall symptom and dysarthria severity. These results are consistent with a contribution of the cerebellum to rehearsal and suggest that inclusion of a delay before recall is especially detrimental in individuals with cerebellar damage. However, when we examined markers of rehearsal (i.e. word-length and articulatory suppression effects) in an immediate serial recall task, we found that qualitative aspects of the patients' rehearsal strategies were unaffected. We propose that the cerebellum may contribute to verbal working memory during the initial phonological encoding and/or by strengthening memory traces rather than by fundamentally subserving covert articulatory rehearsal.
Executive functions deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive functions deficits in ASDs, and only one in adolescents. The current study examined cognitive control -the ability to maintain task context online to support adaptive functioning in the face of response competition-in 22 adolescents aged 12-18 with autism spectrum disorders and 23 age, gender, and IQ matched typically developing subjects. During the cue phase of the task, where subjects must maintain information online to overcome a prepotent response tendency, typically developing subjects recruited significantly more anterior frontal (BA 10), parietal (BA 7, 40), and occipital regions (BA 18) for high control trials (25% of trials) versus low control trials (75% of trials). Both groups showed similar activation for low control cues, however the ASD group exhibited significantly less activation for high control cues. Functional connectivity analysis using time series correlation, factor analysis, and beta series correlation methods provided convergent evidence that the ASD group exhibited lower levels of functional connectivity and less network integration between frontal, parietal, and occipital regions. In the typically developing group, fronto-parietal connectivity was related to lower error rates on high control trials. In the autism group, reduced fronto-parietal connectivity was related to attention deficit hyperactivity disorder symptoms.
Task switching is an important aspect of cognitive control and understanding its underlying mechanisms is the focus of considerable research. In this paper, we contrast two different kinds of task switching paradigms and provide evidence that different cognitive mechanisms underlie switching behavior depending on whether the switch is between sets of rules (rule switch) or sets of features presented simultaneously (perceptual switch). In two experiments, we demonstrate that behavioral effects (Experiment 1) and neural recruitment (Experiment 2) vary with the type of switch performed. While perceptual switch costs occurred when the alternative feature set was physically present, rule switch costs were observed even in their absence. Rule switching was also characterized by larger target repetition effects and by greater engagement of the dorsolateral prefrontal cortex. In contrast, perceptual switching was associated with greater recruitment of the parietal cortex. These results provide strong evidence for multiple forms of switching and suggest the limitations of generalizing results across shift types. KeywordsExecutive function; cognitive control; dorsolateral prefrontal cortex; superior parietal cortex; fMRI The ability to switch tasks rapidly is important for responding flexibly in a changing environment (Miller & Cohen, 2001). Both behavioral and neuroscientific investigators have sought to understand how people disengage from one task in order to undertake another (see Monsell, 2003, for a review). In this set of experiments, we seek to understand the behavioral and neural consequences associated with different forms of task switching. Specifically, we examine whether there are qualitative differences in the cognitive mechanisms used to switch between tasks that require the reorienting of visuospatial attention (e.g., to what or where should I attend?) and switches that involve the ability to deal with changing goal-related information such as rules (e.g., what should I do?). We propose that the "task" used to investigate task switching (or "set" in set shifting) has important implications for understanding the nature of © 2008 Elsevier Ltd. All rights reserved.Corresponding address: Dr. Susan Ravizza, Dept. of Psychology, Michigan State University, East Lansing, MI, 48824 Email: E-mail: ravizzas@msu.edu Phone: 517−432−3366. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptNeuropsychologia. Author manuscript; available in PMC 2009 October 1. Published in final edited form as:Neuropsychologia. NIH-PA Author ManuscriptNIH-PA ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.