Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete's health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete’s health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.
Hydration status is not easily measured, but acute changes in hydration status are often estimated from body mass change. Changes in body mass are also often used as a proxy measure for sweat losses. There are, however, several sources of error that may give rise to misleading results, and our aim in this paper is to quantify these potential errors. Respiratory water losses can be substantial during hard work in dry environments. Mass loss also results from substrate oxidation, but this generates water of oxidation which is added to the body water pool, thus dissociating changes in body mass and hydration status: fat oxidation actually results in a net gain in body mass as the mass of carbon dioxide generated is less than the mass of oxygen consumed. Water stored with muscle glycogen is presumed to be made available as endogenous carbohydrate stores are oxidized. Fluid ingestion and sweat loss complicate the picture by altering body water distribution. Loss of hypotonic sweat results in increased osmolality of body fluids. Urine and faecal losses can be measured easily, but changes in the water content of the bladder and the gastrointestinal tract cannot. Body mass change is not always a reliable measure of changes in hydration status and substantial loss of mass may occur without an effective net negative fluid balance.
The interaction between the volume and composition of fluids ingested was investigated in terms of rehydration effectiveness. Twelve male volunteers, dehydrated by 2.06 +/- 0.02% (mean +/- SE) of body mass by intermittent cycle exercise, consumed a different drink volume on four separate weeks; six subjects received drink L (23 mmol.l-1 Na+) in each trial and six were given drink H (61 mmol.l-1 Na+). Volumes consumed were equivalent to 50%, 100%, 150%, and 200% of body mass loss (trials A, B, C, and D, respectively). Blood and urine samples were obtained before exercise and for 7.5 h after exercise. Less urine was excreted following rehydration in trial A than in all other trials. Cumulative urine output (median ml) was less in trial B (493, range 181-731) than D (1361, range 1014-1984), which was not different from trial C (867, range 263-1191) in group L. In group H, the volume excreted in trial B (260, range 137-376) was less than trials C (602, range 350-994) and D (1001, range 714-1425), and the volume in trial C was less than in trial D. These results suggest that both sodium concentration and fluid volume consumed interact to affect the rehydration process. A drink volume greater than sweat loss during exercise must be ingested to restore fluid balance, but unless the sodium content of the beverage is sufficiently high this will merely result in an increased urinary output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.